

Appendix G: Hazardous Materials Information

FirstSearch Technology Corporation

Environmental FirstSearch TM Report

Target Property:

WEST BALBOA BLVD

NEWPORT BEACH CA 92663

Job Number: MARINA PARK

PREPARED FOR:

MBA

07-07-08

Tel: (781) 551-0470 Fax: (781) 551-0471

Environmental FirstSearch Search Summary Report

Target Site: WEST BALBOA BLVD

NEWPORT BEACH CA 92663

FirstSearch Summary

Database	Sel	Updated	Radius	Site	1/8	1/4	1/2	1/2>	ZIP	TOTALS	
				_	_	_	_	_	_	_	
NPL	Y	04-07-08	1.25	0	0	0	0	0	0	0	
NPL Delisted	Y	04-07-08	0.75	0	0	0	0	0	0	0	
CERCLIS	Y	04-22-08	0.75	0	0	0	0	1	0	1	
NFRAP	Y	04-22-08	0.75	0	0	0	2	0	0	2	
RCRA COR ACT	Y	04-01-08	1.25	0	0	0	0	0	0	0	
RCRA TSD	Y	04-01-08	0.75	0	0	0	0	0	0	0	
RCRA GEN	Y	04-01-08	0.50	0	0	0	6	-	0	6	
RCRA NLR	Y	04-01-08	0.50	0	0	0	1	-	0	1	
Federal IC / EC	Y	04-01-08	0.50	0	0	0	0	-	0	0	
ERNS	Y	04-22-08	0.50	0	0	0	0	-	4	4	
Tribal Lands	Y	12-01-05	1.25	0	0	0	0	0	0	0	
State/Tribal Sites	Y	08-08-07	1.25	0	0	0	2	2	0	4	
State Spills 90	Y	11-06-07	0.50	0	0	0	3	-	0	3	
State/Tribal SWL	Y	04-09-08	0.75	0	0	0	0	0	1	1	
State/Tribal LUST	Y	04-11-08	0.75	0	0	1	0	10	0	11	
State/Tribal UST/AST	Y	01-03-07	0.50	0	0	0	1	-	0	1	
State/Tribal EC	Y	NA	0.50	0	0	0	0	-	0	0	
State/Tribal IC	Y	04-27-07	0.50	0	0	0	0	-	0	0	
State/Tribal VCP	Y	08-15-06	0.75	0	0	0	0	0	0	0	
State/Tribal Brownfields	Y	08-08-07	0.75	0	0	0	0	0	0	0	
State Permits	Y	04-16-08	0.50	0	0	0	7	-	2	9	
State Other	Y	08-08-07	0.50	0	0	1	2	-	0	3	
- TOTALS -				0	0	2	24	13	7	46	

Notice of Disclaimer

Due to the limitations, constraints, inaccuracies and incompleteness of government information and computer mapping data currently available to FirstSearch Technology Corp., certain conventions have been utilized in preparing the locations of all federal, state and local agency sites residing in FirstSearch Technology Corp.'s databases. All EPA NPL and state landfill sites are depicted by a rectangle approximating their location and size. The boundaries of the rectangles represent the eastern and western most longitudes; the northern and southern most latitudes. As such, the mapped areas may exceed the actual areas and do not represent the actual boundaries of these properties. All other sites are depicted by a point representing their approximate address location and make no attempt to represent the actual areas of the associated property. Actual boundaries and locations of individual properties can be found in the files residing at the agency responsible for such information.

Waiver of Liability

Although FirstSearch Technology Corp. uses its best efforts to research the actual location of each site, FirstSearch Technology Corp. does not and can not warrant the accuracy of these sites with regard to exact location and size. All authorized users of FirstSearch Technology Corp.'s services proceeding are signifying an understanding of FirstSearch Technology Corp.'s searching and mapping conventions, and agree to waive any and all liability claims associated with search and map results showing incomplete and or inaccurate site locations.

Environmental FirstSearch Site Information Report

Request Date: Search Type: 07-07-08 **COORD**

Requestor Name: MBAJob Number: MARINA PARK **Standard:** ASTM-05

Filtered Report

Target Site: WEST BALBOA BLVD

NEWPORT BEACH CA 92663

Demographics

Population: Sites: 46 Non-Geocoded: 7 NA

Radon: NA

Site Location

	<u>Degrees (Decimal)</u>	Degrees (Min/Sec)		<u>UTMs</u>
Longitude:	-117.923035	-117:55:23	Easting:	414366.981
Latitude:	33.608169	33:36:29	Northing:	3718900.557
			Zone:	11

Comment

Comment:

Additional Requests/Services

Adjacent ZIP Codes: 0 M	ile(s)	Services:		
ZIP Code City Name	ST Dist/Dir Sel		Requested?	Date
		Sanborns	No	
		Aerial Photographs	No	
		Historical Topos	No	
		City Directories	No	
		Title Search/Env Liens	No	
		Municipal Reports	No	
		Online Topos	Yes	07-07-08

Environmental FirstSearch Sites Summary Report

WEST BALBOA BLVD NEWPORT BEACH CA 92663 **JOB:** MARINA PARK **Target Property:**

SELECTED: 0 **TOTAL:** 46 **GEOCODED:** 39 NON GEOCODED: 7

Map ID	DB Type	Site Name/ID/Status	Address	Dist/Dir	Page No.
1	LUST	MOBIL 18-HG7 T0605900496/CASE CLOSED	1500 BALBOA NEWPORT BEACH CA 92663	0.16 SE	1
1	OTHER	MOBIL S S 18-H67 ORCO_GW_87UT166/NOT REPORTED	1500 BALBOA BLVD NEWPORT BEACH CA 92659	0.16 SE	2
2	PERMITS	SOUTH COAST SHIPYARD CAL000300628/ACTIVE	223 21ST ST NEWPORT BEACH CA 92663	0.27 NW	2
3	RCRAGN	SEA SPRAY BOAT YARD CAD982470718/SGN	226 21ST ST NEWPORT BEACH CA 92663	0.27 NW	3
4	PERMITS	LIDO PENINSULA COMPANY CAL000301958/ACTIVE	101 SHIPYARD WAY STE M NEWPORT BEACH CA 92663	0.29 NW	4
5	RCRAGN	BELLPORT GROUP INC CAR000148882/SGN	101 SHIPYARD WAY NEWPORT BEACH CA 92663	0.30 NW	5
6	RCRAGN	ERIC KIEVIT MARINE DIESEL CAD983662883/SGN	151 SHIPYARD WY BERTH C CBN NEWPORT BEACH CA 92663	0.31 NW	6
7	RCRAGN	NEWPORT HARBOR SHIPYARD CAD981653199/SGN	151 SHIPYARD WAY BERTH C NEWPORT BEACH CA 92663	0.31 NW	7
8	RCRANLR	LIDO PENINSULA CO CAD983671843/NLR	201 SHIPYARD WY CABIN NUMBE NEWPORT BEACH CA 92663	0.31 NW	8
9	UST	LIDO PENINSULA CO TISID-STATE33721/ACTIVE	251 SHIPYARD NEWPORT BEACH CA 92660	0.33 NW	9
10	PERMITS	PETROS MARINE SERVICE, INC. CAL000254471/ACTIVE	2270 NEWPORT BLVD NEWPORT BEACH CA 92663	0.34 NW	10
10	PERMITS	SOUTH COAST BOAT YARD INC CAL000000944/INACTIVE	2270 NEWPORT BLVD NEWPORT BEACH CA 92663	0.34 NW	11
11	SPILLS	ETCO HOMES G_SL0605958194/CASE OPEN	2300 NEWPORT BOULEVARD NEWPORT BEACH CA 92663	0.35 NW	12
12	RCRAGN	W B R TRANSPORTATION LLC CAR000121731/TRANSPORTER	7752 MONROE ST NEWPORT BEACH CA 92663	0.36 NW	13
13	PERMITS	BALBOA BOAT YARD INC CAL000091395/ACTIVE	2414 NEWPORT BLVD NEWPORT BEACH CA 92663	0.39 NW	14
14	PERMITS	TERRY MCKENZIE, INC CAL000141436/ACTIVE	1151 W BALBOA BLVD NEWPORT BEACH CA 92661	0.45 SE	15
15	NFRAP	NEWPORT PLATING CO CAD982360356/NFRAP-N	2810 VILLA WAY NEWPORT BEACH CA 92663	0.47 NW	16
16	NFRAP	NEWPORT PLATING CO 3 CAD982360414/NFRAP-N	2815 VILLA WAY NEWPORT BEACH CA 92663	0.47 NW	16
18	OTHER	NEWPORT PLATING COMPANY 3 CAL30340151/PROPERTY/SITE REFERR	2815 VILLA WAY NEWPORT BEACH CA 92661	0.47 NW	17
17	OTHER	NEWPORT PLATING CO. CAL30340050/PROPERTY/SITE REFERR	2810 VILLA WAY NEWPORT BEACH CA 92663	0.47 NW	19
15	RCRAGN	NEWPORT PLATING CAD982360356/SGN	2810 VILLA WAY NEWPORT BEACH CA 92663	0.47 NW	20

Environmental FirstSearch Sites Summary Report

WEST BALBOA BLVD NEWPORT BEACH CA 92663 **JOB:** MARINA PARK **Target Property:**

SELECTED: 0 **TOTAL:** 46 **GEOCODED:** 39 NON GEOCODED: 7

Map ID	DB Type	Site Name/ID/Status	Address	Dist/Dir	Page No.
15	SPILLS	NEWPORT PLATING SLC8_189/ADDITIONAL CHARACTER	2810 VILLA WAY NEWPORT BEACH CA	0.47 NW	21
17	SPILLS	NEWPORT PLATING G_SL0605980961/NOT REPORTED	2810 VILLA WAY NEWPORT BEACH CA 92663	0.47 NW	21
16	STATE	NEWPORT PLATING COMPANY 3 CAL30340151/PROPERTY/SITE REFERR	2815 VILLA WAY NEWPORT BEACH CA 92661	0.47 NW	22
15	STATE	NEWPORT PLATING CO. CAL30340050/PROPERTY/SITE REFERR	2810 VILLA WAY NEWPORT BEACH CA 92663	0.47 NW	25
19	PERMITS	SCHOCK MARINE CAL000059574/ACTIVE	504 29TH ST NEWPORT BEACH CA 92663	0.50 NW	28
21	LUST	DELANEYS T0605901362/CASE CLOSED	634 LIDO PARK NEWPORT BEACH CA 92663	0.53 NW	29
20	LUST	UNDESIGNATED PARKING AREA T0605901199/CASE CLOSED	2809 NEWPORT NEWPORT BEACH CA 92660	0.53 NW	30
20	LUST	CITY YARD (FORMER) 083001767T/CASE CLOSED	2809 NEWPORT BLVD NEWPORT BEACH CA 92663	0.53 NW	31
22	LUST	LIDO PARK CONDOMINIUMS T0605902220/CASE CLOSED	601 LIDO PARK NEWPORT BEACH CA 92663	0.54 NW	32
23	LUST	UNOCAL 5310 T0605900346/REMEDIAL ACTION	3001 NEWPORT NEWPORT BEACH CA 92663	0.60 NW	33
24	LUST	GERMAN AUTOS T0605900804/CASE CLOSED	3000 NEWPORT NEWPORT BEACH CA 92663	0.60 NW	34
23	LUST	UNOCAL T0605937174/CASE CLOSED	3001 NEWPORT NEWPORT BEACH CA 92663	0.60 NW	35
25	CERCLIS	CAGNEY TRUST CA0000187997/NOT PROPOSED	SW CORNER OF 32ND ST and NE NEWPORT BEACH CA 92663	0.68 NW	36
26	LUST	BOY SCOUTS OF AMERICA SEA BASE T0605901174/CASE CLOSED	1931 COAST NEWPORT BEACH CA 92663	0.69 NE	37
27	LUST	NEWPORT BEACH CITY HALL T0605900150/CASE CLOSED	3300 NEWPORT NEWPORT BEACH CA 92658	0.70 NW	38
28	LUST	WORLD OIL 42 T0605901106/CASE CLOSED	3401 NEWPORT NEWPORT BEACH CA 92660	0.73 NW	39
29	STATE	ORANGE COUNTY REFINING CO. WELL 3 CAL30130028/PROPERTY/SITE REFERR	213 42ND ST. NEWPORT BEACH CA 92660	1.13 NW	40
30	STATE	SOUTH BASIN OIL COMPANY CAL30130024/PROPERTY/SITE REFERR	204/206 43RD STREET NEWPORT BEACH CA 92663	1.17 NW	42

Environmental FirstSearch Sites Summary Report

WEST BALBOA BLVD NEWPORT BEACH CA 92663 **JOB:** MARINA PARK **Target Property:**

SELECTED: 0 **TOTAL:** 46 **GEOCODED:** 39 **NON GEOCODED:** 7

Map ID	DB Type	Site Name/ID/Status	Address	Dist/Dir	Page No.
	ERNS	UNKNOWN 297590/MARINE VESSEL (EPA R	NEWPORT BEACH HARBOR/3812 R NEWPORT BEACH CA 92663	NON GC	N/A
	ERNS	UNKNOWN 256292/UNKNOWN (EPA REGIONS	NEWPORT BEACH MARINA NR COI NEWPORT BEACH CA	RNON GC	N/A
	ERNS	NEWPORT PLATING CO 13332/UNKNOWN	NEWPORT PLATING CO NEWPORT BEACH CA	NON GC	N/A
	ERNS	UNKNOWN 306819/MARINE VESSEL (EPA R	PIER 19TH ST NEWPORT BEACH CA 92663	NON GC	N/A
	PERMITS	REMOTE/ MACHINE SHOP/ HORNBLOWER C CAL000326181/ACTIVE	C815 WEST 17TH ST STE 10 NEWPORT BEACH CA 92663	NON GC	N/A
	PERMITS	CLINICAL FORMULA LLC CAL000160517/ACTIVE	888 W 16TH ST NEWPORT BEACH CA 92663	NON GC	N/A
	SWL	NEWPORT TERRACE LF SWIS30-AB-0168/CLOSED	WEST 19TH ST. DEAD END NEWPORT BEACH CA	NON GC	N/A

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

LUST

SEARCH ID: 34 **DIST/DIR:** 0.16 SE **MAP ID:** 1

 NAME:
 MOBIL 18-HG7
 REV:
 04/11/08

 ADDRESS:
 1500 BALBOA
 ID1:
 T0605900496

NEWPORT BEACH CA 92659 ID2:

ORANGE STATUS: CASE CLOSED

CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: 08 LOCAL CASE NUMBER: 87UT166

RESPONSIBLE PARTY: JOHNNY MEDRANO

ADDRESS OF RESPONSIBLE PARTY: 3700 W 190TH ST TPT2

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER: 083000618T CASE TYPE: OTHER SUBSTANCE LEAKED: GASOLINE

SUBSTANCE QUANTITY: 0

LEAK CAUSE: UNKNOWN LEAK SOURCE: UNKNOWN

HOW LEAK WAS DISCOVERED: TANK CLOSURE

DATE DISCOVERED (blank if not reported): 1987-06-18 00:00:00

HOW LEAK WAS STOPPED: CLOSE TANK

STOP DATE (blank if not reported): 9999-09-09 00:00:00

STATUS:

CASE CLOSED

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency):

ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency): DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

 ${\bf DATE\ PRELIMINARY\ SITE\ ASSESSMENT\ PLAN\ BEGAN\ (blank\ if\ not\ reported):}$

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

DATE REMEDIATION PLAN WAS SUBMITTED (blank if not reported):

DATE REMEDIAL ACTION UNDERWAY (blank if not reported):

DATE POST REMEDIAL ACTION MONITORING BEGAN (blank if not reported):

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 2000-10-17 00:00:00

REPORT DATE (blank if not reported): $1987-06-18\ 00:00:00$

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

MTBE CNTS: 0
MTBE FUEL: 1

MTBE TESTED: SITE NOT TESTED FOR MTBE. INCLUDES UNKNOWN AND NOT ANALYZED

MTBE CLASS: *

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

OTHER

SEARCH ID: 25 **DIST/DIR:** 0.16 SE **MAP ID:** 1

NAME: MOBIL S S 18-H67 **REV:** 07/01/99

ADDRESS: 1500 BALBOA BLVD ID1: ORCO_GW_87UT166

NEWPORT BEACH CA 92659

ORANGE

ID2:

NOT REPORTED

CONTACT: PHONE:

ORANGE COUNTY GROUNDWATER CLEANUP LIST INFORMATION

 Case Type:
 G

 Contract Status:
 8

 Fund:
 F

 Substance Code:
 8006619

 Description:
 GASOLINE

Lead Refferal:

Enforcement: Date Closed:

PERMITS

SEARCH ID: 23 **DIST/DIR:** 0.27 NW **MAP ID:** 2

 NAME:
 SOUTH COAST SHIPYARD
 REV:
 04/16/08

 ADDRESS:
 223 21ST ST
 ID1:
 CAL000300628

 NEWPORT BEACH CA 92663
 ID2:

ORANGE STATUS: ACTIVE

CONTACT: PHONE:

THE CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL HAZARDOUS WASTE MANIFEST INVENTORY (HWMI) SITE

 $\underline{\textbf{INFORMATION FROM THE CA EPA AND DTSC HAZARDOUS WASTE TRACKING SYSTEM (HWTS):}$

Date Record was Created: 11/22/2005 9:18:49 AM

Inactivity Date: Facility Mail Name:

Facility Mailing Address: 223 21ST ST, NEWPORT BEACH, CA 92663

Owner Name: PETE STEWART

Owner Address: 223 21ST ST, NEWPORT BEACH, CA 92663

Contact Name: PETE STEWART

Contact Address: 223 21ST ST, NEWPORT BEACH, CA 92663

Contact Phone: 9496752837

Target Property: WEST BALBOA BLVD NEWPORT BEACH CA 92663

JOB: MARINA PARK

RCRAGN

SEARCH ID: 8 **DIST/DIR:** 0.27 NW **MAP ID:** 3

NAME: SEA SPRAY BOAT YARD REV: 6/6/06

ADDRESS: 226 21ST ST **ID1:** CAD982470718

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: SGN

CONTACT: PAULETTE PAPPAS PHONE: 7146751155

SITE INFORMATION

CONTACT INFORMATION: PAULETTE PAPPAS

1717 E BALBOA BLVD BALBOA CA 92661

PHONE: 7146751155

UNIVERSE INFORMATION:

NAIC INFORMATION

336612 - BOAT BUILDING

ENFORCEMENT INFORMATION:

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

PERMITS

ACTIVE

SEARCH ID: 19 **DIST/DIR:** 0.29 NW **MAP ID:** 4

NAME:LIDO PENINSULA COMPANYREV:04/16/08ADDRESS:101 SHIPYARD WAY STE MID1:CAL000301958

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: CONTACT: PHONE:

THE CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL HAZARDOUS WASTE MANIFEST INVENTORY (HWMI) SITE

 $\underline{\textbf{INFORMATION FROM THE CA EPA AND DTSC HAZARDOUS WASTE TRACKING SYSTEM (HWTS):}$

Date Record was Created: 1/5/2006 1:01:45 PM

Inactivity Date: Facility Mail Name:

Facility Mailing Address: PO BOX 1549, NEWPORT BEACH, CA 92659-1549

Owner Name: LIDO PENINSULA CO

Owner Address: PO BOX 1549, NEWPORT BEACH, CA 92659-1549

Contact Name: JAMIE BEUTHIN

Contact Address: 151 SHIPYARD WAY STE 7, NEWPORT BEACH, CA 92663-0000

Contact Phone: 9496739330

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

RCRAGN

SEARCH ID: 4 **DIST/DIR:** 0.30 NW **MAP ID:** 5

NAME: BELLPORT GROUP INC REV: 6/6/06

ADDRESS: 101 SHIPYARD WAY ID1: CAR000148882

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: SGN

CONTACT: DWAYNE PACE PHONE: 949-673-9330

SITE INFORMATION

CONTACT INFORMATION: DWAYNE PACE

101 SHIPYARD WAY STE M NEWPORT BEACH CA 92663

PHONE: 949-673-9330

UNIVERSE INFORMATION:

NAIC INFORMATION

71393 - MARINAS

ENFORCEMENT INFORMATION:

VIOLATION INFORMATION:

HAZARDOUS WASTE INFORMATION:

Corrosive waste Ignitable waste

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

RCRAGN

SEARCH ID: 5 **DIST/DIR:** 0.31 NW **MAP ID:** 6

NAME: ERIC KIEVIT MARINE DIESEL REV: 6/6/06

ADDRESS: 151 SHIPYARD WY BERTH C CBN 5 ID1: CAD983662883

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: SGN

CONTACT: ERIC KIEVITS PHONE: 7146730882

SITE INFORMATION

CONTACT INFORMATION: ERIC KIEVITS

151 SHIPYARD WY BERTH C CBN 5

NEWPORT BEACH CA 92663

PHONE: 7146730882

UNIVERSE INFORMATION:

NAIC INFORMATION

ENFORCEMENT INFORMATION:

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

RCRAGN

SEARCH ID: 6 **DIST/DIR:** 0.31 NW **MAP ID:** 7

NAME: NEWPORT HARBOR SHIPYARD REV: 6/6/06

ADDRESS: 151 SHIPYARD WAY BERTH C ID1: CAD981653199

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: SGN

CONTACT: ENVIRONMENTAL MANAGER PHONE: 7146752550

SITE INFORMATION

CONTACT INFORMATION: ENVIRONMENTAL MANAGER

151 SHIPYARD WAY BERTH C NEWPORT BEACH CA 92663

PHONE: 7146752550

UNIVERSE INFORMATION:

NAIC INFORMATION

23521 - PAINTING AND WALL COVERING CONTRACTORS

ENFORCEMENT INFORMATION:

WEST BALBOA BLVD JOB: MARINA PARK **Target Property:**

NEWPORT BEACH CA 92663

RCRANLR

SEARCH ID: 10 **DIST/DIR:** 0.31 NW MAP ID: 8

NAME: LIDO PENINSULA CO **REV:** 6/6/06

ADDRESS: 201 SHIPYARD WY CABIN NUMBER 1 CAD983671843 ID1:

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: NLR

CONTACT: SEAN M WALSH PHONE: 7146739330

SITE INFORMATION

CONTACT INFORMATION: SEAN M WALSH

P O BOX 1549

NEWPORT BEACH CA 926591549

PHONE: 7146739330

UNIVERSE INFORMATION:

NAIC INFORMATION

ENFORCEMENT INFORMATION:

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

UST

SEARCH ID: 28 **DIST/DIR:** 0.33 NW **MAP ID:** 9

NAME: LIDO PENINSULA CO REV: 01/01/94

ADDRESS: 251 SHIPYARD ID1: TISID-STATE33721

NEWPORT BEACH CA 92660 ID2:

Orange STATUS: ACTIVE CONTACT: PHONE:

UST HISTORICAL DATA

This site was listed in the FIDS Zip Code List as a UST site. The Office of Hazardous Data Management produced the FIDS list. The FIDS list is an index of names and locations of sites recorded in various California State environmental agency databases. It is sorted by zip code and as an index, details regarding the sites were never included.

The UST information included in FIDS as provided by the Office of Hazardous Data Management was originally collected from the SWEEPS database. The SWEEPS database recorded Underground Storage Tanks and was maintained by the State Water Resources Control Board (SWRCB). That agency no longer maintains the SWEEPS database and last updated it in 1994. The last release of that 1994 database was in 1997.

Oversight of Underground Storage Tanks within California is now conducted by Certified Unified Program Agencies referred to as CUPA s. There are approximately 102 CUPA s and Local Oversight Programs (LOP s) in the State of California. Most are city or county government agencies. As of 1998, all sites or facilities with underground storage tanks were required by Federal mandate to obtain certification by designated UST oversight agencies (in this case, CUPA s) that the UST/s at their location were upgraded or removed in adherence with the 1998 RCRA standards.

Information from the FIDS/SWEEPS lists were included in this report search to help identify where underground storage tanks may have existed that were not recorded in CUPA databases or lists collected by Track Info Services. This may occur if a tank was removed prior to development of recent CUPA UST lists or never registered with a CUPA.

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

PERMITS

SEARCH ID: 20 **DIST/DIR:** 0.34 NW **MAP ID:** 10

 NAME:
 PETROS MARINE SERVICE, INC.
 REV:
 04/16/08

 ADDRESS:
 2270 NEWPORT BLVD
 ID1:
 CAL000254471

2270 NEWPORT BLVD ID1: CAL0002544' NEWPORT BEACH CA 92663 ID2:

Orange STATUS: ACTIVE

CONTACT: PHONE:

THE CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL HAZARDOUS WASTE MANIFEST INVENTORY (HWMI) SITE

 $\underline{\textbf{INFORMATION FROM THE CA EPA AND DTSC HAZARDOUS WASTE TRACKING SYSTEM (HWTS):}\\$

Date Record was Created: 6/21/2002 4:13:47 PM

Inactivity Date: Facility Mail Name:

Facility Mailing Address: 2270 NEWPORT BLVD, NEWPORT BEACH, CA 92663

Owner Name: PETROS KOURAKIS

Owner Address: 2270 NEWPORT BLVD, NEWPORT BEACH, CA 92663

Contact Name: JILL MCKINNEY

Contact Address: 2270 NEWPORT BLVD, NEWPORT BEACH, CA 92663

Contact Phone: 9496735040

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

PERMITS

DIST/DIR: SEARCH ID: 22 0.34 NW MAP ID: 10

NAME: SOUTH COAST BOAT YARD INC REV: 04/16/08 2270 NEWPORT BLVD CAL000000944 ADDRESS: ID1:

NEWPORT BEACH CA 92663 ID2:

STATUS: INACTIVE Orange

CONTACT: PHONE:

THE CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL HAZARDOUS WASTE MANIFEST INVENTORY (HWMI) SITE

INFORMATION FROM THE CA EPA AND DTSC HAZARDOUS WASTE TRACKING SYSTEM (HWTS):

Date Record was Created: 11/14/1989 **Inactivity Date:** 11/21/2005

Facility Mail Name:

Facility Mailing Address: 223 21ST ST, NEWPORT BEACH, CA 92663-4303

Owner Name: SOUTH COAST BOAT YARD INC

Owner Address: 2270 NEWPORT BLVD, NEWPORT BEACH, CA 92663-0000

Contact Name: PETER STEWART

Contact Address: , NOTICE - CR, NEWPORT BEACH, CA 92663-4324

Contact Phone: 9496752837

HWMI WASTE TYPE AND TONNAGE INFORMATION:

Unspecified organic liquid mixture Waste Type:

0.22935 Total Tonnage per Year:

HWMI WASTE TYPE AND TONNAGE INFORMATION:

Waste Type: Unspecified aqueous solution

Total Tonnage per Year: 2.06415

HWMI WASTE TYPE AND TONNAGE INFORMATION:

Waste Type: Unspecified solvent mixture

Total Tonnage per Year: 0.35361

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

SPILLS

CASE OPEN

SEARCH ID: 15 **DIST/DIR:** 0.35 NW **MAP ID:** 11

NAME: ETCO HOMES REV: 01/03/07

ADDRESS: 2300 NEWPORT BOULEVARD ID1: G_SL0605958194

NEWPORT BEACH CA 92663 ID2:

CONTACT: STATUS: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD GEOTRACKER SLIC DATABASE

Please note that some SLIC data previously provided by the State Water Resources Control Board via the Regional Boards is not currently provided by the agency in the new GEOTRACKER format. To ensure that our data is as complete as possible we have retained the original Regional Boards SLIC records as well as loaded all GEOTRACKER SLIC listings. GEOTRACKER records are distinguished by an initial G at the start of the ID.

LEAD AGENCY: SANTA ANA RWQCB (REGION 8) **LEAD AGENCY CONTACT:** MANECK G. CHICHGAR

LEAD AGENCY CASE NUMBER:

RESPONSIBLE PARTY:

SUBSTANCE RELEASED (please note that not all codes are available and some records may remain encoded): 7439921, 7440473, 7440508

RECENT DTW:

STATUS: Case Open

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

RCRAGN

SEARCH ID: 9 **DIST/DIR:** 0.36 NW **MAP ID:** 12

NAME: W B R TRANSPORTATION LLC REV: 4/1/08

ADDRESS: 7752 MONROE ST **ID1:** CAR000121731

PARAMOUNT CA 90723 ID2:

ORANGE STATUS: TRANSPORTER CONTACT: CRAIG A BARRETT PHONE: 949-673-1247

SITE INFORMATION

CONTACT INFORMATION: JOHN LINDSEY

2240 NEWPORT BLVD

NEWPORT BEACH CA 92663

PHONE: 949-673-1247

CONTACT INFORMATION: JOHN LINDSEY

2240 NEWPORT BLVD NEWPORT BEACH CA 92663

PHONE: 9496731247

UNIVERSE INFORMATION:

NAIC INFORMATION

562112 - HAZARDOUS WASTE COLLECTION

ENFORCEMENT INFORMATION:

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

PERMITS

SEARCH ID: 18 **DIST/DIR:** 0.39 NW **MAP ID:** 13

 NAME:
 BALBOA BOAT YARD INC
 REV:
 04/16/08

 ADDRESS:
 2414 NEWPORT BLVD
 ID1:
 CAL000091395

NEWPORT BEACH CA 92663 ID2: CALOOO

Orange STATUS: ACTIVE

CONTACT: PHONE:

THE CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL HAZARDOUS WASTE MANIFEST INVENTORY (HWMI) SITE

INFORMATION FROM THE CA EPA AND DTSC HAZARDOUS WASTE TRACKING SYSTEM (HWTS):

Date Record was Created: 10/5/1994

Inactivity Date: Facility Mail Name:

Facility Mailing Address: 2414 NEWPORT BLVD, NEWPORT BEACH, CA 92663-0000

Owner Name: BALBOA BOAT YARD

Owner Address: 2414 NEWPORT BLVD, NEWPORT BEACH, CA 92663-3704

Contact Name: ARTHUR LEWIS

Contact Address: 2414 NEWPORT BLVD, NEWPORT BEACH, CA

Contact Phone: 7146736834

HWMI WASTE TYPE AND TONNAGE INFORMATION:

Waste Type: Unspecified solvent mixture

Total Tonnage per Year: 0.1251

HWMI WASTE TYPE AND TONNAGE INFORMATION:

Waste Type: Other organic solids

Total Tonnage per Year: 0.1

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

PERMITS

SEARCH ID: 24 **DIST/DIR:** 0.45 SE **MAP ID:** 14

 NAME:
 TERRY MCKENZIE, INC
 REV:
 04/16/08

 ADDRESS:
 1151 W BALBOA BLVD
 ID1:
 CAL000141436

NEWPORT BEACH CA 92661 ID2:

ORANGE STATUS: ACTIVE CONTACT: PHONE:

THE CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL HAZARDOUS WASTE MANIFEST INVENTORY (HWMI) SITE

INFORMATION FROM THE CA EPA AND DTSC HAZARDOUS WASTE TRACKING SYSTEM (HWTS):

Date Record was Created: 8/30/1994

Inactivity Date: Facility Mail Name:

Facility Mailing Address: 1151 W BALBOA BLVD, NEWPORT BEACH, CA 92661-1005

Owner Name: TERRY MCKENZIE, INC.

Owner Address: 1151 W BALBOA BLVD, NEWPORT BEACH, CA 92661-1005

Contact Name: LAURIE MC KENZIE-VP.

Contact Address: 1151 WEST BALBOA BLVD., NEWPORT BEACH, CA 92661-1005

Contact Phone: 7146732372

HWMI WASTE TYPE AND TONNAGE INFORMATION:

Waste Type: Unspecified organic liquid mixture

Total Tonnage per Year: 0.13344

Target Property: WEST BALBOA BLVD NEWPORT BEACH CA 92663

JOB: MARINA PARK

NFRAP							
SEARCH ID: 2	DIST/DIR:	0.47 NW	MAP ID:	15			
NAME: NEWPORT PLATING CO ADDRESS: 2810 VILLA WAY NEWPORT BEACH CA 92663 ORANGE CONTACT:		REV: ID1: ID2: STATUS: PHONE:	4/22/08 CAD982360356 0902597 NFRAP-N				
DESCRIPTION:							
ACTION/QUALITY ARCHIVE SITE	AGENCY/RPS EPA In-House	START/RAA	END 04-27-1989				
DISCOVERY	State, Fund Financed		11-01-1987				
PRELIMINARY ASSESSMENT NFRAP (No Futher Remedial Action Planned	State, Fund Financed		04-27-1989				

NFRAP							
SEARCH ID: 3	DIST/DIR:	0.47 NW	MAP ID:	16			
NAME: NEWPORT PLATING CO 3 ADDRESS: 2815 VILLA WAY NEWPORT BEACH CA 92661 ORANGE CONTACT:		REV: ID1: ID2: STATUS: PHONE:	4/22/08 CAD982360414 0902599 NFRAP-N				
DESCRIPTION:							
ACTION/QUALITY ARCHIVE SITE	AGENCY/RPS EPA In-House	START/RAA	END 10-01-1988				
DISCOVERY	State, Fund Financed		11-01-1987				
PRELIMINARY ASSESSMENT NFRAP (No Futher Remedial Action Planned	EPA Fund-Financed		10-01-1988				

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

OTHER

SEARCH ID: 27 **DIST/DIR:** 0.47 NW **MAP ID:** 18

 NAME:
 NEWPORT PLATING COMPANY 3
 REV:
 07/18/05

 ADDRESS:
 2815 VILLA WAY
 ID1:
 CAL30340151

2815 VILLA WAY ID1: CAL30340151
NEWPORT BEACH CA 92661 ID2:

ORANGE STATUS: PROPERTY/SITE REFERRED TO RCRA

CONTACT: PHONE:

GENERAL SITE INFORMATION

 Site Type:
 Historical

 Status:
 Refer: RCRA

 Status Date:
 1988-08-26 00:00:00

NPL Site: NO

Funding:

Regulatory Agencies Involved: NONE SPECIFIED Lead Agency: NONE SPECIFIED

Project Manager:

Supervisor:Referred - Not AssignedBranch:So Cal - Cypress

Acres:

Assessor s Parcel Number:
Past Uses:
Potential Contaminants:
Confirmed Contaminants:
Potential Media Affected:
NONE SPECIFIED
NONE SPECIFIED
NONE SPECIFIED

Restricted Use: NO

Site Management Required: NONE SPECIFIED

Special Programs Associated with this Site: * CERC2

OTHER SITE NAMES (blank below = not reported by agency)

CAD982360414

30340151

CALDWELL PLATING

COMPLETED ACTIVITIES AND DTSC COMMENTS REGARDING THIS SITE (blank below = not reported by agency)

Area Name: PROJECT WIDE

Sub- Area Name:

Document Type: Site Screening
Completion Date: 1988-08-26

Comments: SITE SCREENING DONE NFA UNDER CERCLA; PENDING STATUS FOR DHS BECAUSE RCRA

 $REGULATED\ FACILITY.$

Area Name: PROJECT WIDE

Sub- Area Name:

Document Type: Preliminary Assessment Report

Completion Date: 1987-10-19

Comments: PRELIM ASSESS DONE NO EVIDENCE OF NEWPORT PLATING EVER BEING AT 2815 VILLA

WAY

Area Name: PROJECT WIDE

Sub- Area Name:

Document Type: Site Screening Completion Date: 1987-05-13

Comments: SITE SCREENING DONE CERCLA GRANT PA REQ D.

Area Name: PROJECT WIDE

- Continued on next page -

Target Property: WEST BALBOA BLVD MARINA PARK **JOB:**

NEWPORT BEACH CA 92663

OTHER

SEARCH ID: 27 **DIST/DIR:** 0.47 NW MAP ID: 18

NAME: NEWPORT PLATING COMPANY 3 **REV:** 07/18/05 ADDRESS: 2815 VILLA WAY

CAL30340151 ID1: NEWPORT BEACH CA 92661 ID2:

ORANGE STATUS: PROPERTY/SITE REFERRED TO RCRA

CONTACT: PHONE:

Sub- Area Name:

Document Type: Discovery **Completion Date:** 1981-08-01

Comments: FACILITY IDENTIFIED PHONE CO. SEARCH.

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

OTHER

SEARCH ID: 26 **DIST/DIR:** 0.47 NW **MAP ID:** 17

 NAME:
 NEWPORT PLATING CO.
 REV:
 07/18/05

 ADDRESS:
 2810 VILLA WAY
 ID1:
 CAL30340050

ORANGE STATUS: PROPERTY/SITE REFERRED TO ANOT

CONTACT: PHONE:

GENERAL SITE INFORMATION

Site Type: Historical

 Status:
 Refer: Other Agency

 Status Date:
 1987-09-30 00:00:00

NPL Site: NO

Funding:

Regulatory Agencies Involved: NONE SPECIFIED Lead Agency: NONE SPECIFIED

Project Manager:

 Supervisor:
 Referred - Not Assigned

 Branch:
 So Cal - Cypress

 Acres:
 NONE SPECIFIED

 Past Uses:
 NONE SPECIFIED

Potential Contaminants:Metals - Other Inorganic Solid Waste, AQUEOUS SOLUTION WITH TOTAL ORGANIC RESIDUES
>= 10, CONTAMINATED SOIL, ACID SOLUTION 2>PH WITH METALS, AQUEOUS SOLUTION 2<PH<12.5, WITH REACTIVE ANIONS, Cadmium

>= 10, CONTAMINATED SOIL, ACID SOLUTION 2>PH WITH METALS, AQUEOUS SOLUTION 2<PH<12.5, WITH REACTIVE ANIONS, Cadmun

and compounds, Chromium VI

Confirmed Contaminants: NONE SPECIFIED

Potential Media Affected: NONE SPECIFIED

Restricted Use: NO

Site Management Required: NONE SPECIFIED

Special Programs Associated with this Site: * CERC2

OTHER SITE NAMES (blank below = not reported by agency)

30340050

COMPLETED ACTIVITIES AND DTSC COMMENTS REGARDING THIS SITE (blank below = not reported by agency)

Area Name: PROJECT WIDE

Sub- Area Name:

Document Type: Preliminary Assessment Report

Completion Date: 1987-10-16

Comments: PRELIM ASSESS DONE DHS-PENDING STATUS; RWQCB AND CO HLTH INVOLVED IN AN

ENFORCEMENT ACTION.

Area Name: PROJECT WIDE

Sub- Area Name:

Document Type: Site Screening Completion Date: 1987-02-13

Comments: SITE SCREENING DONE RATIONALE FOR PA: MORE INFO. NEEDED.

Target Property: WEST BALBOA BLVD NEWPORT BEACH CA 92663

JOB: MARINA PARK

RCRAGN

SEARCH ID: 7 **DIST/DIR:** 0.47 NW **MAP ID:** 15

NAME: NEWPORT PLATING REV: 6/6/06

ADDRESS: 2810 VILLA WAY **ID1:** CAD982360356

NEWPORT BEACH CA 92663 ID2:
ORANGE STATUS: SGN

CONTACT: PHONE:

SITE INFORMATION

CONTACT INFORMATION: ENVIRONMENTAL MANAGER

2810 VILLA WAY

NEWPORT BEACH CA 92663

PHONE: 7146734440

UNIVERSE INFORMATION:

NAIC INFORMATION

ENFORCEMENT INFORMATION:

WEST BALBOA BLVD **Target Property:** JOB: MARINA PARK

NEWPORT BEACH CA 92663

SPILLS

DIST/DIR: SEARCH ID: 17 0.47 NW MAP ID: 15

NAME: NEWPORT PLATING REV: 07/01/2003 2810 VILLA WAY ADDRESS: ID1: SLC8_189

NEWPORT BEACH CA ID2:

ORANGE STATUS: ADDITIONAL CHARACTERIZATION

CONTACT: PHONE:

Lead Agency: REGIONAL BOARD

Program: SLIC

SOIL AND GROUNDWATER Case Type: Status: ADDITIONAL CHARACTERIZATION

Substance: **METALS**

CONTAMINANTS PRESENT: CYANIDE, CADMINUM, CHROMIUM, NICKEL, **Comments:**

COPPER, AND ZINC. ADDITIONAL ASSESSMENT WORK NEEDED **Thomas Brothers Guide Location:**

SPILLS

SEARCH ID: DIST/DIR: 0.47 NW MAP ID: 17

NEWPORT PLATING **REV:** NAME: 01/03/07

ADDRESS: 2810 VILLA WAY ID1: G_SL0605980961 ID2:

NEWPORT BEACH CA 92663

STATUS: NOT REPORTED PHONE:

CONTACT:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD GEOTRACKER SLIC DATABASE

Please note that some SLIC data previously provided by the State Water Resources Control Board via the Regional Boards is not currently provided by the agency in the new GEOTRACKER format. To ensure that our data is as complete as possible we have retained the original Regional Boards SLIC records as well as loaded all GEOTRACKER SLIC listings. GEOTRACKER records are distinguished by an initial G at the start of the ID.

LEAD AGENCY: SANTA ANA RWOCB (REGION 8) LEAD AGENCY CONTACT: MANECK G. CHICHGAR

LEAD AGENCY CASE NUMBER:

RESPONSIBLE PARTY:

SUBSTANCE RELEASED (please note that not all codes are available and some records may remain encoded): 13, 57125, 7440473

RECENT DTW:

STATUS:

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

STATE

SEARCH ID: 12 **DIST/DIR:** 0.47 NW **MAP ID:** 16

 NAME:
 NEWPORT PLATING COMPANY 3
 REV:
 07/03/00

 ADDRESS:
 2815 VILLA WAY
 ID1:
 CAL30340151

2815 VILLA WAY ID1: CAL3034015 NEWPORT BEACH CA 92661 ID2:

Orange STATUS: PROPERTY/SITE REFERRED TO RCRA

CONTACT: PHONE:

OTHER SITE NAMES (blank below = not reported by agency)

OTHER SITE NAMES (blank below = not reported by agency)

CALDWELL PLATING

GENERAL SITE INFORMATION

File Name (if different than site name):

Status: PROPERTY/SITE REFERRED TO RCRA (REFRC)

AWP Site Type: N/A

NPL Site: Fund:

Status Date: 08261988

Lead:

Staff:

Senior Supervisor:

DTSC Region and RWQCB: 4/LONG BEACH
Branch: SOUTHERN CA. - B
RWQCB: SANTA ANA

Site Access:

On Cortese List:

Groundwater Contamination:

Haz Ranking Score: Haz Ranking Score:

Number of Sources Contributing to Contamination at the Site: θ

OTHER AGENCY ID NUMBERS (blank below = not reported by agency)

ID SOURCE NAME, and VALUE: EPA IDENTIFICATION NUMBER CAD982360414

INFORMATION ON SPECIAL PROGRAMS THE SITE IS ASSOCIATED WITH (blank below = not reported by agency)

CERCLA II

PROJECTED ACTIVITIES (blank below = not reported by agency)

PROJECTED ACTIVITIES (blank below = not reported by agency)

PROJECTED ACTIVITIES (blank below = not reported by agency)

PROJECTED ACTIVITIES (blank below = not reported by agency)

Activity: DISCOVERY (DISC)

Activity Status: PROPERTY/SITE REFERRED TO RCRA

Completion Due Date:

Revised Completion Due Date:

Date Activity Actually Completed: 08011981
Yards of Solids Removed: 0
Yards of Solids Treated: 0
Gallons of Liquid Removed: 0
Gallons of Liquid Treated: 0

- Continued on next page -

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

STATE SEARCH ID: 12 **DIST/DIR:** 0.47 NW MAP ID: 16 NAME: NEWPORT PLATING COMPANY 3 REV: 07/03/00 2815 VILLA WAY ADDRESS: ID1: CAL30340151 NEWPORT BEACH CA 92661 ID2: STATUS: PROPERTY/SITE REFERRED TO RCRA Orange

CONTACT: PHONE:

Activity: (SS)

Activity Status: PROPERTY/SITE REFERRED TO RCRA

Completion Due Date:

Revised Completion Due Date:

Date Activity Actually Completed:05131987Yards of Solids Removed:0Yards of Solids Treated:0Gallons of Liquid Removed:0Gallons of Liquid Treated:0

Activity: (PA)

Activity Status: PROPERTY/SITE REFERRED TO RCRA

Completion Due Date:

Revised Completion Due Date:

Date Activity Actually Completed:10191987Yards of Solids Removed:0Yards of Solids Treated:0Gallons of Liquid Removed:0Gallons of Liquid Treated:0

Activity: (SS)

Activity Status: PROPERTY/SITE REFERRED TO RCRA

Completion Due Date:

Revised Completion Due Date:

 Date Activity Actually Completed:
 08261988

 Yards of Solids Removed:
 0

 Yards of Solids Treated:
 0

 Gallons of Liquid Removed:
 0

 Gallons of Liquid Treated:
 0

<u>DTSC COMMENTS REGARDING THIS SITE</u> (blank below = not reported by agency)

DATE COMMENT

08011981 FACILITY IDENTIFIED PHONE CO. SEARCH.

DATE COMMENT

06011982 FINAL STRATEGY SITE REFERRED: TO HWMB/ENF

DATE COMMENT

06211982 CALDWELL PLATING AT SITE 1946 - 1947 and

DATE COMMENT

06211982 WAS BOAT BUILDER.

DATE COMMENT

05131987 SITE SCREENING DONE CERCLA GRANT PA REQ D.

DATE COMMENT

08101987 ORANGE CO. ENV. HEALTH NO FILES

DATE COMMENT

08141987 RWQCB NO FILES NEWPORT PLATING 3

DATE COMMENT

- Continued on next page -

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

STATE

DIST/DIR: SEARCH ID: 12 0.47 NW MAP ID: 16

NAME: NEWPORT PLATING COMPANY 3 **REV:** 07/03/00 ADDRESS: CAL30340151

2815 VILLA WAY ID1: NEWPORT BEACH CA 92661 ID2:

STATUS: PROPERTY/SITE REFERRED TO RCRA Orange

CONTACT: PHONE:

08141987 MAY HAVE RELOCATED AFTER FIRE MORE THAN

DATE COMMENT

20 YEARS AGO 08141987

DATE COMMENT

10161987 FACILITY DRIVE-BY SITE OCCUPIED BY ANOTHER BUSINESS NO

DATE COMMENT

10161987 INDICATION OF ANY PROBLEMS AT SITE

DATE COMMENT

PRELIM ASSESS DONE NO EVIDENCE OF NEWPORT PLATING EVER 10191987

DATE COMMENT 10191987 BEING AT 2815 VILLA WAY

DATE COMMENT

NFA UNDER CERCLA 2 SUBMIT TO EPA 11161987

DATE COMMENT

08261988 SITE SCREENING DONE NFA UNDER CERCLA; PENDING STATUS FOR DHS

DATE COMMENT

BECAUSE RCRA REGULATED FACILITY. 08261988

DATE COMMENT

05191995 RCRA lead. EPA ID CAD982360414 is not an acceptable EPA

DATE COMMENT 05191995 ID number per EPA 4/19/95.

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

STATE

SEARCH ID: 11 **DIST/DIR:** 0.47 NW **MAP ID:** 15

 NAME:
 NEWPORT PLATING CO.
 REV:
 07/03/00

 ADDRESS:
 2810 VILLA WAY
 ID1:
 CAL30340050

2810 VILLA WAY

NEWPORT BEACH CA 92663

ID2:

CAL3034005

Orange STATUS: PROPERTY/SITE REFERRED

CONTACT: PHONE:

OTHER SITE NAMES (blank below = not reported by agency)

NEWPORT PLATING CO.

GENERAL SITE INFORMATION

File Name (if different than site name):

Status: PROPERTY/SITE REFERRED TO ANOTHER AGENCY (REFOA)

AWP Site Type: N/A

NPL Site:

Fund:

Status Date: 09301987

Lead: Staff:

Senior Supervisor:

DTSC Region and RWQCB: 4/LONG BEACH
Branch: SOUTHERN CA. - B
RWQCB: SANTA ANA

Site Access: Controlled

On Cortese List:

Groundwater Contamination: Haz Ranking Score: Haz Ranking Score:

Number of Sources Contributing to Contamination at the Site: θ

INFORMATION ON SPECIAL PROGRAMS THE SITE IS ASSOCIATED WITH (blank below = not reported by agency)

CERCLA II

PROJECTED ACTIVITIES (blank below = not reported by agency)

PROJECTED ACTIVITIES (blank below = not reported by agency)

Activity: (SS)
Activity Status: PROPERTY/SITE REFERRED TO ANOTHER AGENCY

Completion Due Date:

Revised Completion Due Date:

 Date Activity Actually Completed:
 02131987

 Yards of Solids Removed:
 0

 Yards of Solids Treated:
 0

 Gallons of Liquid Removed:
 0

 Gallons of Liquid Treated:
 0

Activity: (PA)

Activity Status: PROPERTY/SITE REFERRED TO ANOTHER AGENCY

Completion Due Date:

Revised Completion Due Date:

Date Activity Actually Completed: 10161987
Yards of Solids Removed: 0
Yards of Solids Treated: 0
Gallons of Liquid Removed: 0
Gallons of Liquid Treated: 0

- Continued on next page -

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

STATE

SEARCH ID: 11 **DIST/DIR:** 0.47 NW **MAP ID:** 15

 NAME:
 NEWPORT PLATING CO.
 REV:
 07/03/00

 ADDRESS:
 2810 VILLA WAY
 ID1:
 CAL30340050

2810 VILLA WAY ID1: CAL30340050 NEWPORT BEACH CA 92663 ID2:

Orange STATUS: PROPERTY/SITE REFERRED

CONTACT: PHONE:

DTSC COMMENTS REGARDING THIS SITE (blank below = not reported by agency)

DATE COMMENT

01131982 PHONE F-U,J.L.EDWARDS: CHEM WERE DISP TO

DATE COMMENT

01131982 SUMP-UNLINED IN USE UNTIL 1980. CLAIMED

DATE COMMENT

01131982 USED A HAULER.

DATE COMMENT

01131982 SUMP EMPTY WHEN CEMENTED. DRUMS HOLD NEW

DATE COMMENT

01131982 SOLUTIONS. NO CHEM ARE RECYCLED. NEVER

DATE COMMENT

01141982 FACILITY DRIVE-BY LOC OF ABAND SAMP UNK. STANDING WATER ON

DATE COMMENT

01141982 BACK LOT. BBLS STILL STORED HAPHAZARDLY.

DATE COMMENT 01141982 MAY BE ENFORCEMENT PROB.

DATE COMMENT

06281982 FINAL STRATEGY SITE REFERRED: TO HWMB- LA ENFORCEMENT.

DATE COMMENT

02131987 SITE SCREENING DONE RATIONALE FOR PA: MORE INFO. NEEDED.

DATE COMMENT

04071987 INSPECTION(STATE) RWQCB and N.B. SANITATION DEPT. PERFORM

DATE COMMENT

04071987 DRY TEST

DATE COMMENT

05251987 INSPECTION(STATE) JOINT INSPECTION BY RWQCB, ORANGE CO.

DATE COMMENT

05251987 HLTH CARE AGENCY, NEWPORT BEACH POLICE

DATE COMMENT

05251987 and FIRE DEPT.; OBSERVE HAZ WSTE DISCHARGE

DATE COMMENT

05251987 TO SOILS

DATE COMMENT

10011987 RWQCB-FILES ON INSP/SURFACE WATER

DATE COMMENT

- Continued on next page -

WEST BALBOA BLVD **Target Property: JOB:** MARINA PARK

NEWPORT BEACH CA 92663

STATE

SEARCH ID: 11 **DIST/DIR:** 0.47 NW 15 MAP ID:

NAME: NEWPORT PLATING CO. **REV:** 07/03/00 ADDRESS: 2810 VILLA WAY

CAL30340050 ID1: NEWPORT BEACH CA 92663 ID2:

STATUS: PROPERTY/SITE REFERRED Orange

CONTACT: PHONE:

10021987 DHS-SOME FILES ON FACILITY

DATE COMMENT

PRELIM ASSESS DONE DHS-PENDING STATUS; RWQCB AND CO HLTH 10161987

DATE COMMENT

10161987 INVOLVED IN AN ENFORCEMENT ACTION.

COMMENT DATE

11161987 SUBMIT TO EPA NFA: SITE WILL NOT SCORE BASED ON

DATE COMMENT

11161987 AVAILABLE INFO

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

PERMITS

SEARCH ID: 21 **DIST/DIR:** 0.50 NW **MAP ID:** 19

 NAME:
 SCHOCK MARINE
 REV:
 04/16/08

 ADDRESS:
 504 29TH ST
 ID1:
 CAL000059574

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: ACTIVE

CONTACT: PHONE:

THE CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL HAZARDOUS WASTE MANIFEST INVENTORY (HWMI) SITE

INFORMATION FROM THE CA EPA AND DTSC HAZARDOUS WASTE TRACKING SYSTEM (HWTS):

Date Record was Created: 2/24/1992

Inactivity Date: Facility Mail Name:

Facility Mailing Address: 2900 LAFAYETTE RD, NEWPORT BEACH, CA 92663-3718

Owner Name: SCOTT SCHOCK/SCHOCK FAMILY TRUST

Owner Address: 2900 LAFAYETTE RD, NEWPORT BEACH, CA 92663-3718

Contact Name: MARIE SCHOCK

Contact Address: 2900 LAFAYETTE RD, NEWPORT BEACH, CA 92663-3718

Contact Phone: 9496732050

HWMI WASTE TYPE AND TONNAGE INFORMATION:

Waste Type: Hydrocarbon solvents (benzene, hexane, Stoddard, Etc.)

Total Tonnage per Year: 0.191

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

LUST

STATUS:

CASE CLOSED

SEARCH ID: 31 **DIST/DIR:** 0.53 NW **MAP ID:** 21

 NAME:
 DELANEYS
 REV:
 04/11/08

 ADDRESS:
 634 LIDO PARK
 ID1:
 T0605901362

NEWPORT BEACH CA 92663 ID2:

CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: 08 LOCAL CASE NUMBER: 90UT225

ORANGE

RESPONSIBLE PARTY: LEVON GUGASIAN

ADDRESS OF RESPONSIBLE PARTY: 17 RIDGELINE DRIVE

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER: 083001822T
CASE TYPE: OTHER
SUBSTANCE LEAKED: DIESEL
SUBSTANCE QUANTITY: 0

LEAK CAUSE: UNKNOWN LEAK SOURCE: UNKNOWN

HOW LEAK WAS DISCOVERED:TANK CLOSURE

DATE DISCOVERED (blank if not reported): 1990-09-06 00:00:00

HOW LEAK WAS STOPPED: CLOSE TANK

STOP DATE (blank if not reported): 9999-09-09 00:00:00

STATUS: CASE CLOSED

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency): ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency):

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

 ${\bf DATE\ PRELIMINARY\ SITE\ ASSESSMENT\ PLAN\ BEGAN\ (blank\ if\ not\ reported):}$

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

DATE REMEDIATION PLAN WAS SUBMITTED (blank if not reported):

 $\label{eq:def:DATE} \textbf{DATE REMEDIAL ACTION UNDERWAY} \ (\textbf{blank if not reported}):$

 ${\bf DATE\ POST\ REMEDIAL\ ACTION\ MONITORING\ BEGAN\ (blank\ if\ not\ reported):}$

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 1993-02-18 00:00:00

REPORT DATE (blank if not reported): 1990-09-06 00:00:00

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

MTBE CNTS: 0
MTBE FUEL: 0

MTBE TESTED: NOT REQUIRED TO BE TESTED

MTBE CLASS: *

Target Property: WEST BALBOA BLVD MARINA PARK JOB:

NEWPORT BEACH CA 92663

LUST

SEARCH ID: 36 **DIST/DIR:** 0.53 NW **MAP ID:** 20

NAME: UNDESIGNATED PARKING AREA REV: 04/11/08 2809 NEWPORT T0605901199 ADDRESS: ID1:

NEWPORT BEACH CA 92660 ID2:

ORANGE STATUS: CASE CLOSED

CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: LOCAL CASE NUMBER: 90UT156 RESPONSIBLE PARTY: JOHN NEWCOMB

ADDRESS OF RESPONSIBLE PARTY: 2800 LAFAYETTE

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER: 083001570T CASE TYPE: OTHER SUBSTANCE LEAKED: 8,8008206 SUBSTANCE QUANTITY: 0

LEAK CAUSE: UNKNOWN LEAK SOURCE: UNKNOWN

HOW LEAK WAS DISCOVERED: TANK CLOSURE

DATE DISCOVERED (blank if not reported): 1990-05-04 00:00:00

HOW LEAK WAS STOPPED: CLOSE TANK

STOP DATE (blank if not reported): 9999-09-09 00:00:00

STATUS: CASE CLOSED

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency): ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency):

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN BEGAN (blank if not reported):

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

DATE REMEDIATION PLAN WAS SUBMITTED (blank if not reported):

DATE REMEDIAL ACTION UNDERWAY (blank if not reported):

DATE POST REMEDIAL ACTION MONITORING BEGAN (blank if not reported):

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 1990-11-07 00:00:00

REPORT DATE (blank if not reported): 1990-05-04 00:00:00

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

MTBE CNTS: MTBE FUEL: 0

MTBE TESTED: NOT REQUIRED TO BE TESTED

MTBE CLASS:

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

LUST

SEARCH ID: 30 **DIST/DIR:** 0.53 NW **MAP ID:** 20

 NAME:
 CITY YARD (FORMER)
 REV:
 07/11/02

 ADDRESS:
 2809 NEWPORT BLVD
 ID1:
 083001767T

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: CASE CLOSED

CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred dating after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY **REGIONAL BOARD:** SANTA ANA REGION

LOCAL CASE NUMBER: 90UT156
RESPONSIBLE PARTY: UNKNOWN
ADDRESS OF RESPONSIBLE PARTY:

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER: 083001767T
CASE TYPE: OTHER
SUBSTANCE LEAKED: 8008206
SUBSTANCE QUANTITY: 75

LEAK CAUSE: STRUCTURE FAILURE

LEAK SOURCE: TANK

HOW LEAK WAS DISCOVERED: TANK CLOSURE
DATE DISCOVERED (blank if not reported): 5/5/90
HOW LEAK WAS STOPPED: REMOVE CONTENTS
STOP DATE (blank if not reported): 5/5/90
STATUS: CASE CLOSED

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency): REMOVE FREE PRODUCT-

REMOVE FLOATING PRODUCT FROM WATER TABLE. EXCAVATE AND TREAT.

ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency):

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported): 1/20/91 REVIEW DATE (blank if not reported): 4/10/98

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN BEGAN (blank if not reported):

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

DATE REMEDIATION PLAN WAS SUBMITTED (blank if not reported): 5/5/90

DATE REMEDIAL ACTION UNDERWAY (blank if not reported):

DATE POST REMEDIAL ACTION MONITORING BEGAN (blank if not reported):

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 11/7/90

REPORT DATE (blank if not reported): 6/17/90

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

 $\label{eq:maximum} \textbf{MTBE DATE} \textbf{(Date of historical maximum MTBE concentration):}$

MTBE GROUNDWATER CONCENTRATION:

MTBE SOIL CONCENTRATION: MTBE CNTS: θ MTBE FUEL: θ

MTBE TESTED: NOT REQUIRED TO BE TESTED

MTBE CLASS: *

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

LUST

SEARCH ID: 33 **DIST/DIR:** 0.54 NW **MAP ID:** 22

 NAME:
 LIDO PARK CONDOMINIUMS
 REV:
 04/11/08

 ADDRESS:
 601 LIDO PARK
 ID1:
 T0605902220

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: CASE CLOSED CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: 08 LOCAL CASE NUMBER: 98UT090

RESPONSIBLE PARTY: BILL CUNNINGHAM

ADDRESS OF RESPONSIBLE PARTY: 601 LIDO PARK DR

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER: 083003306T
CASE TYPE: OTHER
SUBSTANCE LEAKED: DIESEL
SUBSTANCE QUANTITY: 0

LEAK CAUSE: UNKNOWN
LEAK SOURCE: UNKNOWN

HOW LEAK WAS DISCOVERED: TANK CLOSURE

DATE DISCOVERED (blank if not reported): 1998-11-09 00:00:00

HOW LEAK WAS STOPPED: CLOSE TANK

STOP DATE (blank if not reported): 9999-09-09 00:00:00

STATUS: CASE CLOSED

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency): ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency):

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

 ${\bf DATE\ PRELIMINARY\ SITE\ ASSESSMENT\ PLAN\ BEGAN\ (blank\ if\ not\ reported):}$

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

 ${\bf DATE\ REMEDIATION\ PLAN\ WAS\ SUBMITTED\ (blank\ if\ not\ reported):}$

DATE REMEDIAL ACTION UNDERWAY (blank if not reported):

DATE POST REMEDIAL ACTION MONITORING BEGAN (blank if not reported):

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 1999-12-03 00:00:00

REPORT DATE (blank if not reported): 1998-11-09 00:00:00

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

MTBE CNTS: 0
MTBE FUEL: 0

MTBE TESTED: NOT REQUIRED TO BE TESTED

MTBE CLASS: *

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

LUST

SEARCH ID: 38 **DIST/DIR:** 0.60 NW **MAP ID:** 23

 NAME:
 UNOCAL 5310
 REV:
 04/11/08

 ADDRESS:
 3001 NEWPORT
 ID1:
 T0605900346

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: REMEDIAL ACTION

CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: 08
LOCAL CASE NUMBER: 89UT089
RESPONSIBLE PARTY: ROLAND MORA

ADDRESS OF RESPONSIBLE PARTY: 145 SOUTH STATE COLLEGE BLVD

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER: 083000431T CASE TYPE: OTHER SUBSTANCE LEAKED: GASOLINE

SUBSTANCE QUANTITY: 0

LEAK CAUSE: UNKNOWN LEAK SOURCE: UNKNOWN

HOW LEAK WAS DISCOVERED: NO DESCRIPTION

DATE DISCOVERED (blank if not reported): 1989-05-12 00:00:00

HOW LEAK WAS STOPPED: OTHER MEANS

STOP DATE (blank if not reported): 9999-09-09 00:00:00

STATUS: REMEDIAL ACTION

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency):

ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency): Informal Staff Enforcement

Letter

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

 ${\bf DATE\ PRELIMINARY\ SITE\ ASSESSMENT\ PLAN\ BEGAN\ (blank\ if\ not\ reported):}$

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

 ${\bf DATE\ REMEDIATION\ PLAN\ WAS\ SUBMITTED\ (blank\ if\ not\ reported):}$

DATE REMEDIAL ACTION UNDERWAY (blank if not reported): 1993-08-19 00:00:00

 ${\bf DATE\ POST\ REMEDIAL\ ACTION\ MONITORING\ BEGAN\ (blank\ if\ not\ reported):}$

 ${\bf DATE\ CLOSURE\ LETTER\ ISSUED\ (SITE\ CLOSED)\ (blank\ if\ not\ reported):}$

REPORT DATE (blank if not reported): 1989-05-19 00:00:00

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

 MTBE CNTS:
 0

 MTBE FUEL:
 1

 MTBE TESTED:
 YES

 MTBE CLASS:
 *

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

LUST

SEARCH ID: 32 **DIST/DIR:** 0.60 NW **MAP ID:** 24

 NAME:
 GERMAN AUTOS
 REV:
 04/11/08

 ADDRESS:
 3000 NEWPORT
 ID1:
 T0605900804

NEWPORT BEACH CA 92663 ID2:

ORANGE STATUS: CASE CLOSED

CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: 08 LOCAL CASE NUMBER: 88UT124

RESPONSIBLE PARTY: THEO VAN LINGEN

ADDRESS OF RESPONSIBLE PARTY: 3000 NEWPORT BLVD

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER: 083001016T CASE TYPE: SOIL ONLY SUBSTANCE LEAKED: WASTE OIL

SUBSTANCE QUANTITY: 0

LEAK CAUSE: UNKNOWN
LEAK SOURCE: UNKNOWN

HOW LEAK WAS DISCOVERED:TANK CLOSURE

DATE DISCOVERED (blank if not reported): 1988-06-30 00:00:00

HOW LEAK WAS STOPPED: CLOSE TANK

STOP DATE (blank if not reported): 9999-09-09 00:00:00

STATUS: CASE CLOSED

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency): ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency):

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN BEGAN (blank if not reported):

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

DATE REMEDIATION PLAN WAS SUBMITTED (blank if not reported):

 $\label{eq:def:DATE} \textbf{DATE REMEDIAL ACTION UNDERWAY} \ (\textbf{blank if not reported}):$

 ${\bf DATE\ POST\ REMEDIAL\ ACTION\ MONITORING\ BEGAN\ (blank\ if\ not\ reported):}$

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 1988-08-05 00:00:00

REPORT DATE (blank if not reported): 1988-06-30 00:00:00

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

MTBE CNTS: 0
MTBE FUEL: 0

MTBE TESTED: NOT REQUIRED TO BE TESTED

MTBE CLASS: *

Target Property: WEST BALBOA BLVD MARINA PARK JOB:

NEWPORT BEACH CA 92663

LUST

SEARCH ID: 37 **DIST/DIR:** 0.60 NW **MAP ID:** 23

NAME: UNOCAL REV: 04/11/08 3001 NEWPORT T0605937174 ADDRESS: ID1:

NEWPORT BEACH CA 92663 ID2:

STATUS: CASE CLOSED **ORANGE**

CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: 08 LOCAL CASE NUMBER: 86UT008 RESPONSIBLE PARTY: RICH GOSSETT

ADDRESS OF RESPONSIBLE PARTY: POBOX 85176

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER:

CASE TYPE: UNDEFINED SUBSTANCE LEAKED: GASOLINE

SUBSTANCE QUANTITY: 0

LEAK CAUSE: UNKNOWN LEAK SOURCE: UNKNOWN

HOW LEAK WAS DISCOVERED: TANK CLOSURE

DATE DISCOVERED (blank if not reported): 1965-01-01 00:00:00

HOW LEAK WAS STOPPED: CLOSE TANK

STOP DATE (blank if not reported): 9999-09-09 00:00:00

STATUS:

CASE CLOSED

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency): ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency):

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN BEGAN (blank if not reported):

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

DATE REMEDIATION PLAN WAS SUBMITTED (blank if not reported):

DATE REMEDIAL ACTION UNDERWAY (blank if not reported):

DATE POST REMEDIAL ACTION MONITORING BEGAN (blank if not reported):

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 1986-09-16 00:00:00

REPORT DATE (blank if not reported): 1965-01-01 00:00:00

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

MTBE CNTS: MTBE FUEL:

MTBE TESTED: SITE NOT TESTED FOR MTBE. INCLUDES UNKNOWN AND NOT ANALYZED

MTBE CLASS:

WEST BALBOA BLVD MARINA PARK **Target Property: JOB:**

NEWPORT BEACH CA 92663

CERCLIS

REV:

ID1:

4/22/08

0904996

CA0000187997

SEARCH ID: 1 DIST/DIR: 0.68 NW MAP ID: 25

NAME: CAGNEY TRUST

ADDRESS: SW CORNER OF 32ND ST and NEWPORT BLVD.

NEWPORT BEACH CA 92663

ID2: ORANGE STATUS:

NOT PROPOSED **CONTACT:** JEFF INGLIS PHONE: 4159723095

ACTION/QUALITY START/RAA AGENCY/RPS **END**

EPA Fund-Financed 03-25-1994 discovery

preliminary assessment EPA Fund-Financed 02-23-1999 08-30-1999

NFRAP (No Futher Remedial Action Planned

DESCRIPTION:

Target Property: WEST BALBOA BLVD MARINA PARK JOB:

NEWPORT BEACH CA 92663

LUST

SEARCH ID: DIST/DIR: 0.69 NE **MAP ID:** 26

NAME: BOY SCOUTS OF AMERICA SEA BASE REV: 04/11/08 T0605901174 ADDRESS: 1931 COAST ID1:

NEWPORT BEACH CA 92659 ID2:

ORANGE STATUS: CASE CLOSED

CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: 08 LOCAL CASE NUMBER: 90UT132 RESPONSIBLE PARTY: MIKE HARRISON

ADDRESS OF RESPONSIBLE PARTY: 14321 W CHAMBERS RD

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER: 083001534T CASE TYPE: SOIL ONLY SUBSTANCE LEAKED: WASTE OIL

SUBSTANCE QUANTITY: 0

LEAK CAUSE: UNKNOWN LEAK SOURCE: UNKNOWN

HOW LEAK WAS DISCOVERED: TANK CLOSURE

DATE DISCOVERED (blank if not reported): 1990-05-07 00:00:00

HOW LEAK WAS STOPPED: CLOSE TANK

STOP DATE (blank if not reported): 9999-09-09 00:00:00 CASE CLOSED

STATUS:

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency): ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency):

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN BEGAN (blank if not reported):

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

DATE REMEDIATION PLAN WAS SUBMITTED (blank if not reported):

DATE REMEDIAL ACTION UNDERWAY (blank if not reported):

DATE POST REMEDIAL ACTION MONITORING BEGAN (blank if not reported):

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 1990-08-08 00:00:00

REPORT DATE (blank if not reported): 1990-05-07 00:00:00

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

MTBE CNTS: MTBE FUEL: 0

MTBE TESTED: NOT REQUIRED TO BE TESTED

MTBE CLASS:

Target Property: WEST BALBOA BLVD MARINA PARK JOB:

NEWPORT BEACH CA 92663

LUST

SEARCH ID: DIST/DIR: 0.70 NW **MAP ID:** 27

NAME: NEWPORT BEACH CITY HALL REV: 04/11/08 3300 NEWPORT T0605900150 ADDRESS: ID1:

NEWPORT BEACH CA 92658 ID2:

STATUS: ORANGE CASE CLOSED

CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: 08 LOCAL CASE NUMBER: 88UT142

RESPONSIBLE PARTY: DONALD SIMPSON

ADDRESS OF RESPONSIBLE PARTY: 3300 NEWPORT BLVD

SITE OPERATOR: WATER SYSTEM:

CASE NUMBER: 083000199T CASE TYPE: OTHER SUBSTANCE LEAKED: **GASOLINE**

SUBSTANCE QUANTITY: 0

LEAK CAUSE: UNKNOWN LEAK SOURCE: UNKNOWN

HOW LEAK WAS DISCOVERED: TANK CLOSURE

DATE DISCOVERED (blank if not reported): 1988-08-09 00:00:00

HOW LEAK WAS STOPPED: CLOSE TANK

STOP DATE (blank if not reported): 9999-09-09 00:00:00

STATUS: CASE CLOSED

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency): ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency):

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN BEGAN (blank if not reported):

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

DATE REMEDIATION PLAN WAS SUBMITTED (blank if not reported):

DATE REMEDIAL ACTION UNDERWAY (blank if not reported):

DATE POST REMEDIAL ACTION MONITORING BEGAN (blank if not reported):

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 1991-06-19 00:00:00

REPORT DATE (blank if not reported): 1988-08-09 00:00:00

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

MTBE CNTS:

MTBE FUEL:

MTBE TESTED: SITE NOT TESTED FOR MTBE. INCLUDES UNKNOWN AND NOT ANALYZED

MTBE CLASS:

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

LUST

SEARCH ID: 39 **DIST/DIR:** 0.73 NW **MAP ID:** 28

 NAME:
 WORLD OIL 42
 REV:
 04/11/08

 ADDRESS:
 3401 NEWPORT
 ID1:
 T0605901106

NEWPORT BEACH CA 92660 ID2:

ORANGE STATUS: CASE CLOSED CONTACT: PHONE:

RELEASE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

Please note that some data previously provided by the State Water Resources Control Board in the LUSTIS database is not currently being provided by the agency in the most recent edition. Incidents that occurred after the year 2000 may not have much information. Field headers with blank information following after should be interpreted as unreported by the agency.

LEAD AGENCY: LOCAL AGENCY

REGIONAL BOARD: 08
LOCAL CASE NUMBER: 90UT057
RESPONSIBLE PARTY: JOHN HUNDLEY

ADDRESS OF RESPONSIBLE PARTY: 9302 S GARFIELD AVE

SITE OPERATOR: WATER SYSTEM:

 CASE NUMBER:
 083001456T

 CASE TYPE:
 OTHER

 SUBSTANCE LEAKED:
 12035,800661

SUBSTANCE QUANTITY: 0

LEAK CAUSE: CORROSION
LEAK SOURCE: TANK

HOW LEAK WAS DISCOVERED: NUISANCE CONDITIONS

DATE DISCOVERED (blank if not reported): 1989-11-13 00:00:00

HOW LEAK WAS STOPPED: CLOSE TANK AND FILL IN PLACE

STOP DATE (blank if not reported): 9999-09-09 00:00:00

STATUS: CASE CLOSED

ABATEMENT METHOD (please note that not all code translations have been provided by the reporting agency):

ENFORCEMENT TYPE (please note that not all code translations have been provided by the reporting agency): Closure Letter

DATE OF ENFORCEMENT (blank if not reported):

ENTER DATE (blank if not reported):

REVIEW DATE (blank if not reported):

DATE OF LEAK CONFIRMATION (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN WAS SUBMITTED (blank if not reported):

DATE PRELIMINARY SITE ASSESSMENT PLAN BEGAN (blank if not reported):

DATE POLLUTION CHARACTERIZATION PLAN BEGAN (blank if not reported):

DATE REMEDIATION PLAN WAS SUBMITTED (blank if not reported):

 $\label{eq:def:DATE} \textbf{DATE REMEDIAL ACTION UNDERWAY} \ (\textbf{blank if not reported}):$

DATE POST REMEDIAL ACTION MONITORING BEGAN (blank if not reported): 1999-10-28 00:00:00

DATE CLOSURE LETTER ISSUED (SITE CLOSED) (blank if not reported): 2004-06-15 00:00:00

REPORT DATE (blank if not reported): 1989-11-13 00:00:00

MTBE DATA FROM THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD LUSTIS DATABASE

MTBE DATE(Date of historical maximum MTBE concentration):

MTBE GROUNDWATER CONCENTRATION (parts per billion):

MTBE SOIL CONCENTRATION (parts per million):

 MTBE CNTS:
 0

 MTBE FUEL:
 0

 MTBE TESTED:
 YES

 MTBE CLASS:
 *

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

STATE

SEARCH ID: 13 **DIST/DIR:** 1.13 NW **MAP ID:** 29

 NAME:
 ORANGE COUNTY REFINING CO. WELL 3
 REV:
 07/03/00

 ADDRESS:
 213 42ND ST.
 ID1:
 CAL30130028

213 42ND ST. ID1: CAL30130028 NEWPORT BEACH CA 92660 ID2:

Orange STATUS: PROPERTY/SITE REFERRED

CONTACT: PHONE:

OTHER SITE NAMES (blank below = not reported by agency)

ORANGE COUNTY REFINING CO. WELL 3

GENERAL SITE INFORMATION

File Name (if different than site name):

Status: PROPERTY/SITE REFERRED TO ANOTHER AGENCY (REFOA)

Listed

AWP Site Type: *N/A*

NPL Site:

Fund:

Status Date: 02021995

Lead: Staff:

Senior Supervisor:

DTSC Region and RWQCB: 4/LONG BEACH **Branch:** SOUTHERN CA. - B

RWQCB: SANTA ANA

Site Access:

On Cortese List:

Groundwater Contamination: Haz Ranking Score:

Haz Ranking Score:

Number of Sources Contributing to Contamination at the Site: θ

<u>DTSC COMMENTS REGARDING THIS SITE</u> (blank below = not reported by agency)

DATE COMMENT

01011973 VIOLATION DETECTED OIL FLOWED INTO HOUSE BUILT OVER WELL

DATE COMMENT

05291974 LETTER FROM INGRAM IN DOG TO CITY OF NB

DATE COMMENT

05291974 RECOM NORTH BEACH TAKE CARE OF WELL.

DATE COMMENT

06031974 DOG. LETTER FROM JF MATTHEWS. OUTLINES

DATE COMMENT

06031974 ABAND PROCEDURE. DISCUSS PROB W/WELL

DATE COMMENT

11141975 FACILITY DRIVE-BY NO APPARENT PROB.

DATE COMMENT

11141975 INSPECTION(STATE) DOG. CAPPED and C-U WELL.

DATE COMMENT

06261981 DOG. LIST WELL AS HZD,APT 059-05501

DATE06261981

COMMENT
06261981

LEAKING OIL and GAS SINCE 1936.

- Continued on next page -

Target Property: WEST BALBOA BLVD **JOB:** MARINA PARK

NEWPORT BEACH CA 92663

STATE

SEARCH ID: 13 **DIST/DIR:** 1.13 NW MAP ID: 29

NAME: ORANGE COUNTY REFINING CO. WELL 3 **REV:** 07/03/00 ADDRESS: 213 42ND ST.

CAL30130028 ID1: NEWPORT BEACH CA 92660 ID2:

Orange STATUS: PROPERTY/SITE REFERRED

CONTACT: PHONE:

DATE COMMENT 09011987 REPORTED FOR PROP65

DATE COMMENT

ON CORTESE LIST 01011988

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

STATE

SEARCH ID: 14 **DIST/DIR:** 1.17 NW **MAP ID:** 30

 NAME:
 SOUTH BASIN OIL COMPANY
 REV:
 07/03/00

 ADDRESS:
 204/206 43RD STREET
 ID1:
 CAL30130024

NEWPORT BEACH CA 92663 ID2: CALSU130024

Orange STATUS: PROPERTY/SITE REFERRED

CONTACT: PHONE:

OTHER SITE NAMES (blank below = not reported by agency)

OTHER SITE NAMES (blank below = not reported by agency)

ORANGE CO REFINING COMPANY

GENERAL SITE INFORMATION

File Name (if different than site name):

Status: PROPERTY/SITE REFERRED TO ANOTHER AGENCY (REFOA)

AWP Site Type: *N/A*

NPL Site: Fund:

Status Date: 05231988

Lead:

Staff:

Senior Supervisor: MMONROY

DTSC Region and RWQCB: 4/LONG BEACH
Branch: SOUTHERN CA. - B
RWQCB: SANTA ANA

Site Access:

On Cortese List:

Groundwater Contamination:

Haz Ranking Score: Haz Ranking Score:

Number of Sources Contributing to Contamination at the Site: θ

OTHER AGENCY ID NUMBERS (blank below = not reported by agency)

ID SOURCE NAME, and VALUE: EPA IDENTIFICATION NUMBER CAD982359408

INFORMATION ON SPECIAL PROGRAMS THE SITE IS ASSOCIATED WITH (blank below = not reported by agency)

CERCLA II

PROJECTED ACTIVITIES (blank below = not reported by agency)

PROJECTED ACTIVITIES (blank below = not reported by agency)
Activity: (PA)

Activity Status: PROPERTY/SITE REFERRED TO ANOTHER AGENCY

Completion Due Date:

Revised Completion Due Date:

Vards of Solids Removed:

Vards of Solids Removed:

Vards of Solids Removed:

Vards of Solids Treated:

Gallons of Liquid Removed:

Gallons of Liquid Treated:

0

0

Activity: (SS)

Activity Status: PROPERTY/SITE REFERRED TO ANOTHER AGENCY

Completion Due Date:

- Continued on next page -

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

STATE

SEARCH ID: 14 **DIST/DIR:** 1.17 NW **MAP ID:** 30

 NAME:
 SOUTH BASIN OIL COMPANY
 REV:
 07/03/00

 ADDRESS:
 204/206 43RD STREET
 ID1:
 CAL30130024

204/206 43RD STREET ID1: CAL30130024 NEWPORT BEACH CA 92663 ID2:

Orange STATUS: PROPERTY/SITE REFERRED

CONTACT: PHONE:

Revised Completion Due Date:

Date Activity Actually Completed:10281994Yards of Solids Removed:0Yards of Solids Treated:0Gallons of Liquid Removed:0Gallons of Liquid Treated:0

DTSC COMMENTS REGARDING THIS SITE (blank below = not reported by agency)

DATE COMMENT

06011981 INSPECTION(STATE) DOG SUPERVISED CAPPING and CLEANUP OF WELL

DATE COMMENT

06201981 DOG FILES LIST WELL AS HAZ-HAS BEEN LEAK

DATE COMMENT

06201981 METHANE and HYDROGEN SULFIDE GAS SINCE 64

DATE COMMENT

06201981 API 059-05474

DATE COMMENT

01141982 FACILITY DRIVE-BY HOUSES ARE COMPLETELY DEMOLISHED-ABAND

DATE COMMENT

01141982 APPEARS COMPLETE. STANDING WATER ONSITE-

DATE COMMENT 01141982 BLACK AND ODORONS.

DATE COMMENT

01141982 CONTACT DOG and CITY OF NEWPORT BEACH

DATE COMMENT

01251982 FACILITY DRIVE-BY DETERMINE IF THERE S ANY SITE PROB.

DATE COMMENT

12021982 FINAL STRATEGY SITE REFERRED: TO DOG

DATE COMMENT

03301988 FACILITY DRIVE-BY LOCATION OF WELL IS IN A RESIDENTIAL

DATE COMMENT

03301988 NEIGHBORHOOD.

DATE COMMENT

05231988 PRELIM ASSESS DONE NFA; WELL HAS BEEN PROPERLY ABANDONED

DATE COMMENT

05231988 IN ACCORDANCE WITH DOG POLICIES.

DATE COMMENT

06131988 SUBMIT TO EPA NFA FOR EPA: BASED ON AVAILABLE INFO,

DATE COMMENT

- Continued on next page -

Target Property: WEST BALBOA BLVD JOB: MARINA PARK

NEWPORT BEACH CA 92663

STATE

SEARCH ID: 14 **DIST/DIR:** 1.17 NW **MAP ID:** 30

 NAME:
 SOUTH BASIN OIL COMPANY
 REV:
 07/03/00

 ADDRESS:
 204/206 43RD STREET
 ID1:
 CAL30130024

204/206 43RD STREET ID1: CAL30130024 NEWPORT BEACH CA 92663 ID2:

Orange STATUS: PROPERTY/SITE REFERRED

CONTACT: PHONE:

06131988 THE SITE WILL NOT SCORE FOR NPL

DATE COMMENT

10281994 SITE SCREENING/FILE REVIEW DETERMINE NFA FOR DTSC.

Environmental FirstSearch Street Name Report for Streets within 1 Mile(s) of Target Property

Target Property: WEST BALBOA BLVD NEWPORT BEACH CA 92663

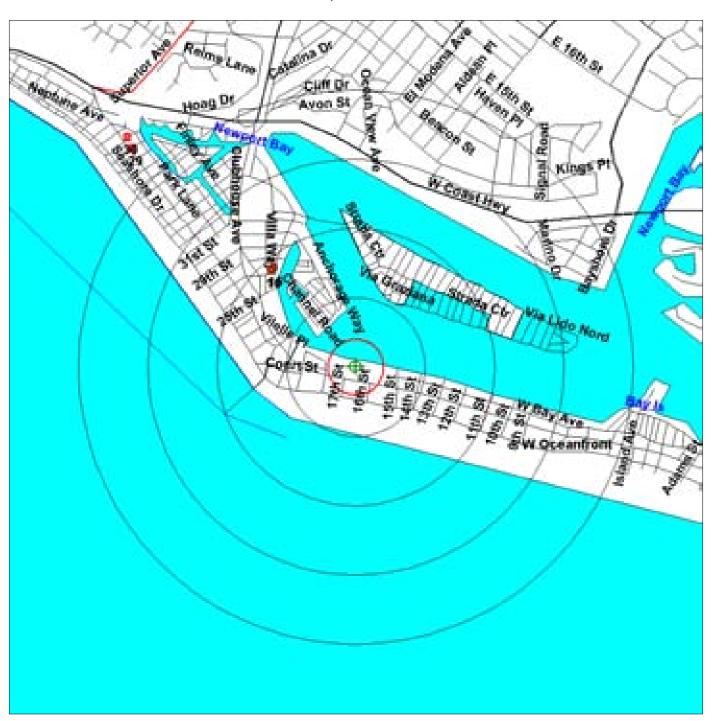
JOB: MARINA PARK

Street Name	Dist/Dir Street Name		Dist/Dir	
10th St	0.58 SE	Marino Dr	0.79 NE	
11th St	0.50 SE	McFadden Pl	0.29 NW	
12th St	0.40 SE	Newport Blvd	0.28 NW	
13th St	0.32 SE	Newport Pier	0.33 SW	
14th St	0.24 SE	Nomad St	0.29 NW	
15th St	0.15 SE	Ocean View Ave	0.84 NE	
16th St	0.13 SE 0.08 SE	Old Newport Blvd	0.92 NW	
17th St	0.06 SE 0.06 SW	Park Ln	0.92 NW 0.87 NW	
18th St	0.00 S W 0.11 SW	Park Pl	0.86 NE	
19th St	0.11 SW 0.18 NW	Piazza Genoa	0.30 NE 0.27 NE	
20th St	0.22 NW	Piazza Lido	0.37 NE	
21st Pl	0.31 NW	Pirate Rd	0.87 NE	
21st St	0.27 NW	Private St	0.40 NW	
22nd St	0.30 NW	Rhine Pl	0.34 NW	
23rd St	0.36 NW	River Ave	0.96 NW	
24th St	0.40 NW	Riverside Ave	0.83 NW	
25th St	0.42 NW	Saint Andrews Rd	0.79 NE	
26th St	0.40 NW	Santa Ana Ave	0.96 NW	
27th St	0.48 NW	Seashore Dr	0.76 NW	
28th St	0.41 NW	Shipyard Way	0.31 NW	
29th St	0.47 NW	Short St	0.79 NW	
30th St	0.50 NW	Signal Rd	0.92 NE	
31st St	0.55 NW	Snug Harbor Rd	0.90 NE	
32nd St	0.55 NW	Strada Ctr	0.37 NE	
33rd St	0.73 NW	Strada Palermo	0.47 NE	
34th St	0.77 NW	The Arc	0.28 NW	
35th St	0.81 NW	The Rhine	0.35 NW	
36th St	0.86 NW	The Rialto	0.90 NW	
37th St	0.91 NW	Tustin Ave	0.78 NE	
38th St	0.93 NW	Via Antibes	0.52 NW	
39th St	0.98 NW	Via Barcelona	0.48 NW	
6th St	0.96 SE	Via Cordova	0.43 NE	
7th St	0.87 SE	Via Dijon	0.39 NE	
8th St	0.77 SE	Via Eboli	0.37 NE	
9th St	0.65 SE	Via Fermo	0.33 NE	
Aliso Ave	0.85 NE	Via Firenze	0.30 NE	
Anchorage Way	0.21 NW	Via Florence	0.35 NE	
Anza St	0.21 NW 0.31 NW	Via Genoa	0.28 NE	
Arbor Dr	0.84 NE	Via Genoa Via Graziana	0.28 NE 0.29 NE	
Avon Aly	0.75 NE	Via Havre	0.27 NE 0.28 NE	
Avon St	0.84 NE	Via Ithaca		
Balboa Coves	0.91 NW	Via Jucar	0.30 NE	
Bayshore Dr	0.73 NE	Via Koron	0.31 NE	
Beach Dr	0.19 NW	Via Lido	0.52 NW	
Beacon St	0.88 NE	Via Lido Nord	0.46 NE	
Bolivar St	0.24 NW	Via Lido Soud	0.27 NE	
Buena Vista Blvd	0.93 SE	Via Lorca	0.33 NE	
Cabrillo St	0.20 NW	Via Malaga	0.60 NW	

Environmental FirstSearch Street Name Report for Streets within 1 Mile(s) of Target Property

Target Property: WEST BALBOA BLVD NEWPORT BEACH CA 92663

JOB: MARINA PARK


Street Name	Dist/Dir	Street Name	Dist/Dir	
Central Ave	0.78 NW	Via Mentone	0.35 NE	
Channel Pl	0.78 NW 0.92 NW	Via Nice Via Nice	0.33 NE 0.37 NE	
Channel Rd	0.92 NW 0.19 NW	Via Oporto	0.61 NW	
Circle Dr	0.19 NW 0.83 NE	Via Oporto Via Orvieto	0.31 NW 0.39 NE	
Clay St	0.98 NE	Via Palermo	0.41 NE	
Cliff Dr	0.79 NE	Via Quito	0.44 NE	
Clubhouse Ave	0.69 NW	Via Ravenna	0.47 NE	
Coral Pl	0.93 NE	Via San Remo	0.49 NE	
Court St	0.19 SW	Via Trieste	0.52 NE	
Crestview Dr	0.74 NE	Via Undine	0.54 NE	
Drake St	0.19 NW	Via Venezia	0.57 NE	
Edgewater Ave	1.00 SE	Via Waziers	0.60 NE	
El Modena Ave	0.88 NE	Via Xanthe	0.64 NE	
El Paseo St	0.19 NW	Via Yella	0.67 NE	
Finley Ave	0.72 NW	Via Zurich	0.69 NE	
Fremont St	0.19 NW	Vilelle Pl	0.11 SW	
Fullerton Ave	0.82 NE	Villa Way	0.43 NW	
Irvine Ave	0.80 NE	Vista Dr	0.81 NE	
Kings Rd	0.73 NE	W Balboa Blvd	0.05 SW	
La Jolla Dr	0.98 NW	W Bay Ave	0.11 NW	
La Jolla Ln	0.98 NW	W Coast Hwy	0.72 NE	
Lafayette Rd	0.42 NW	W Oceanfront	0.12 SW	
Lake Ave	0.67 NW	Waverly Dr	0.95 NE	
Lido Park Dr	0.34 NW	Zurich Cir	0.70 NE	
Lindo Ave	0.97 SE		•••• - · · ·	
Marcus Ave	0.69 NW			

1 Mile Radius ASTM Map: NPL, RCRACOR, STATE Sites

WEST BALBOA BLVD, NEWPORT BEACH CA 92663

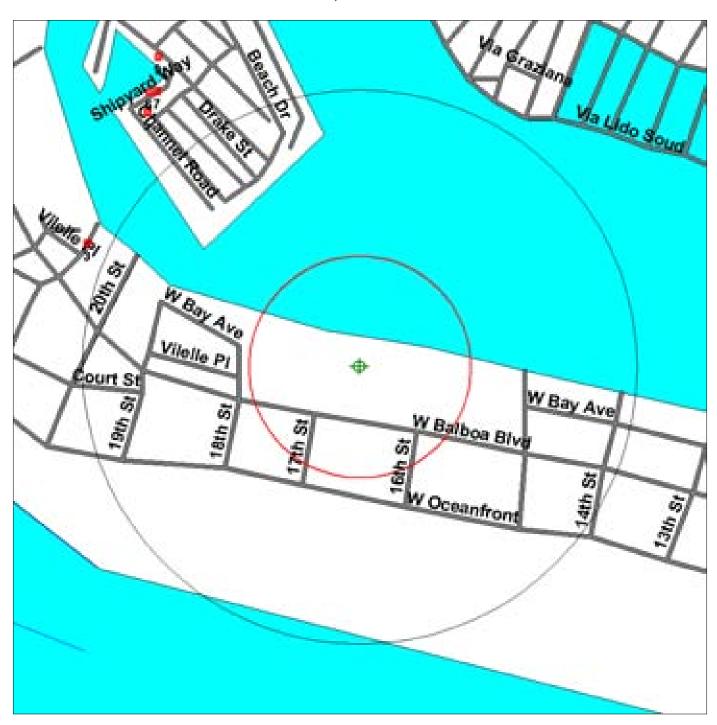
Source: 2005 U.S. Census TIGER Files

Railroads

.5 Mile Radius ASTM Map: CERCLIS, RCRATSD, LUST, SWL

WEST BALBOA BLVD, NEWPORT BEACH CA 92663

Source: 2005 U.S. Census TIGER Files


Railroads

.25 Mile Radius ASTM Map: RCRAGEN, ERNS, UST

WEST BALBOA BLVD, NEWPORT BEACH CA 92663

Source: 2005 U.S. Census TIGER Files

Target Site (Latitude: 33.608169 Longitude: -117.923035) Identified Site, Multiple Sites, Receptor NPL, DELNPL, Brownfield, Solid Waste Landfill (SWL), Hazardous Waste Triballand.....

.5 Mile Radius Non-ASTM Map: RCRANLR, Spills 90, Permits, Other

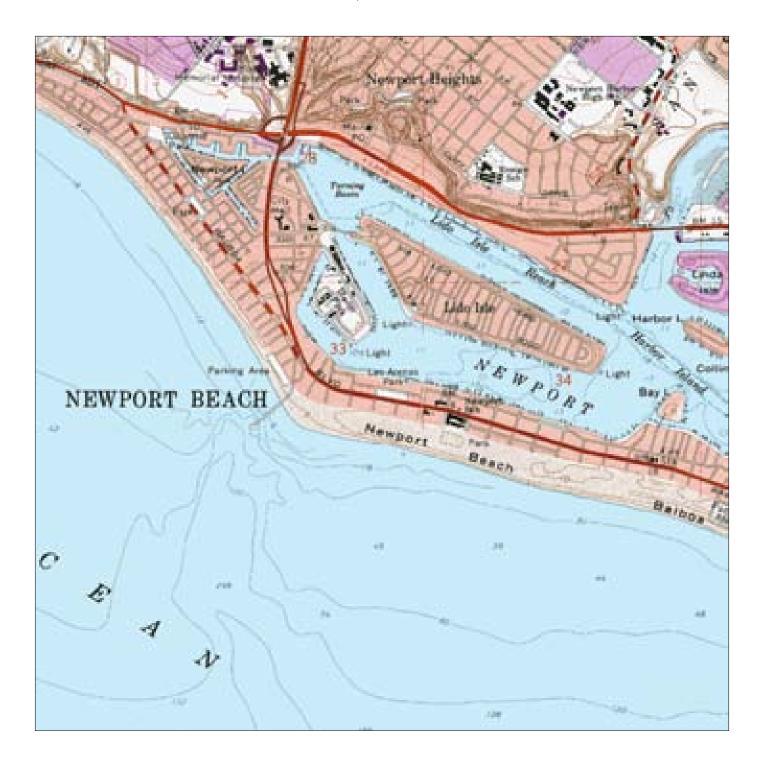
WEST BALBOA BLVD, NEWPORT BEACH CA 92663

Source: 2005 U.S. Census TIGER Files

Target Site (Latitude: 33.608169 Longitude: -117.923035)

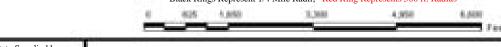
Identified Site, Multiple Sites, Receptor

NPL, DELNPL, Brownfield, Solid Waste Landfill (SWL), Hazardous Waste
Triballand...


National Historic Sites and Landmark Sites

Railroads

Site Location Map


Topo: 1.25 Mile Radius

WEST BALBOA BLVD, NEWPORT BEACH CA 92663

SOURCE: SCANNED USGS TOPOGRAPHIC QUADRANGLES SCANNED BY MAPTECH AND USGS DISTRIBUTED AUGUST, 2005.

Black Rings Represent 1/4 Mile Radii; Red Ring Represents 500 ft. Radius

MARINAPAR

Date Revised: 1981

Map Name: NEWPORT BEACH
Map Reference Code: 33117-E8-TF-024

Date Created: 1965 Date Revision Contour Interval: 5 feet

FIGURE NO.

aft EIR	
	G.2 - HAZARDOUS RECORDS SEARC
	O.E TIME/INDOOR NEGOTIDO GE/INC

6.0 REGULATORY RECORDS REVIEW

MBA reviewed available *Standard Environmental Record Sources* from federal and state regulatory agency databases to identify use, generation, storage, treatment and/or disposal of hazardous materials and chemicals or release incidents of such materials, which may have impacted the Property/Site. The regulatory databases were provided to MBA from FirstSearch (see Environmental FirstSearch Report dated July 7, 2008 in Appendices). The *Standard Environmental Record Sources* that were included in this review follow the ASTM standard E1527-05 guidelines.

TABLE 1 Summary of Regulatory Database Search

Database	Min. Search Distance (miles)	Map Finding Summary
National Priorities List (NPL)	1.25	0
Delisted NPL	0.75	0
Comprehensive Environmental Response, Compensation, and Liability Information Systems List (CERCLIS)	0.75	1
CERCLIS – No Further Remedial Action Planned (CERCLIS – NFRAP)	0.75	2
Resource and Recovery Information System – Permitted Treatment and Disposal Facilities (RCRA – TSD)	0.75	0
Corrective Action Report (RCRA COR)	1.25	0
RCRA Generators (LQG, SQG)	0.50	6
RCRA-NLR	0.50	1
Federal, State, Tribal IC/EC	0.50	0
Emergency Response Notification System (ERNS)	0.50	0
Tribal Lands	1.25	0
State Sites Database (CalSites)	1.25	4
State/Tribal VCP	0.75	0
State/Tribal Brownfields	0.75	0
Spills-1990	0.50	3
Solid Waste Facilities/Landfill Sites (SWL)	0.50	1
Other	0.50	3
Permits	0.50	9
Active Underground Storage Tank Facilities/ Aboveground Storage Tank (UST/AST)	0.50	1
Leaking Underground Storage Tank (LUST)	0.75	11

Due to the Property's length covering roughly three city blocks, the *approximate minimum search distance* for each *Standard Environmental Record Source* listed above was increased by at least 0.25 mile.

Leaking Underground Storage Tanks (LUST)

Each California Regional Water Quality Control Board (RWQCB) compiles an underground storage tank (UST) case list that identifies sites of soil and groundwater contamination caused by unauthorized releases from leaking USTs (LUSTs). A review of the LUST case list identified LUST sites within the search radius as listed in Table 1 and summarized below:

According to the database report, the closest LUST site is Mobil 18-HG7 at 1500 Balboa in Newport Beach. According to the database, this facility reported a gasoline release in June 1986 that affected other groundwater and the case was closed in October 2000. Based on the regulatory status, the above identified LUST activities at this facility are not considered a concern to the Property.

Based on information obtained during the site visit and review of the database report, all remaining LUST sites are located at least 0.40 mile from the Property. Based on the distance, topographic location, and/or regulatory status, these facilities are not considered a concern to the Property.

Other

This database contains information concerning Orange County groundwater cleanup facilities. A review of the database identified sites within the search radius as listed in Table 1 and summarized below:

According to the database report, the closest Orange County groundwater cleanup site is Mobil 18-HG7 at 1500 Balboa in Newport Beach. According to the database, a release of gasoline affected the groundwater and no additional violations were listed in the database. This facility is also identified in the LUST database and is discussed in detail above. Based on the distance, topographic location, and/or regulatory status, this facility is not considered a concern to the Property.

Based on information obtained during the site visit and review of the database report, all remaining Orange County groundwater cleanup sites are located at least 0.3 mile from the Property. Based on the distance, topographic location, and/or regulatory status, these facilities are not considered a concern to the Property.

Registered Underground Storage Tanks (UST)

The County EHD compiles a registered underground storage tank (UST) list that identifies facilities with on-site USTs. A review of the UST list identified sites within the search radius as listed in Table 1 and summarized below:

Based on information obtained during the site visit and review of the database report, the identified UST site is located approximately 0.2 mile from the Property. Based on the distance, topographic location, and/or regulatory status, this facility is not considered a concern to the Property.

State Sites Database

This California EPA database identifies known and potential hazardous substance sites targeted for cleanup). A review of the State Sites case list identified facilities within the search radius as listed in Table 1 and summarized below:

Based on information obtained during the site visit and review of the database report, all identified State Sites facilities are located at least 0.3 mile from the Property. Based on the distance, topographic location, and/or regulatory status, these facilities are not considered a concern to the Property.

RCRIS Generator

The EPA's Resource Conservation and Recovery Act facilities database identifies properties which report generation, storage, transportation, treatment, or disposal of hazardous waste. RCRIS small and very small quantity generators are facilities which generate less than 1000 kg/month of non-acutely hazardous waste. RCRIS large quantity generators are facilities which generate more than 1000 kg/month of non-acutely hazardous waste. A review of the Generator list identified Generator sites within the search radius as listed in Table 1 and summarized below:

Based on information obtained during the site visit and review of the database report, all identified Generator sites are located at least 0.15 mile from the Property. Based on the distance, topographic location, and/or regulatory status, these facilities are not considered a concern to the Property.

Solid Waste Facilities/Landfill Sites (SWF/LF)

The California Integrated Waste Management Board maintains the Solid Waste Information System which is an inventory of the solid waste facilities in the state of California. A review of the SWF/LF list identified SWF/LF sites within the search radius as listed in Table 1 and summarized below:

One solid waste landfill was listed as an unmapped site in the FirstSearch report. This facility cannot be plotted due to errors or missing information in the regulatory records. MBA reviewed

the unmapped solid waste landfill site in the database report and determined the facility is not considered a concern to the Property.

Permits

This database contains information concerning Orange County permitted facilities. A review of the database identified sites within the search radius as listed in Table 1 and summarized below:

Based on information obtained during the site visit and review of the database report, all identified Permits sites are located at least 0.15 mile from the Property. Based on the distance, topographic location, and/or regulatory status, these facilities are not considered a concern to the Property.

RCRA-NLR

The EPA's list of all registered hazardous waste generators includes sites that are classified as NLR (no longer regulated) generator facilities. A review of the NLR list identified NLR sites within the search radius as listed in Table 1 and summarized below:

Based on information obtained during the site visit and review of the database report, the identified NLR site is located approximately 0.2 mile from the Property. Based on the distance, topographic location, and/or regulatory status, this facility is not considered a concern to the Property.

CERCLIS/NFRAP

The Comprehensive Environmental Response, Compensation and Liability Information Sys (CERCLIS) database contains data on potentially hazardous waste sites that have been reported to the US EPA by states, municipalities, private companies and private persons. CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL. The No Further Action Planned Report (NFRAP) database contains information pertaining to sites which have been removed from the U.S. EPA's CERCLIS database. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without need for the site to be placed on the NPL, or the contamination was not serious enough to require federal Superfund action NPL consideration. The database identified sites within the search radius as listed in Table 1 and summarized below:

Based on information obtained during the site visit and review of the database report, all identified CERCLIS/NFRAP sites are located at least 0.3 mile from the Property. Based on the distance, topographic location, and/or regulatory status, these facilities are not considered a concern to the Property.

CERCLIS

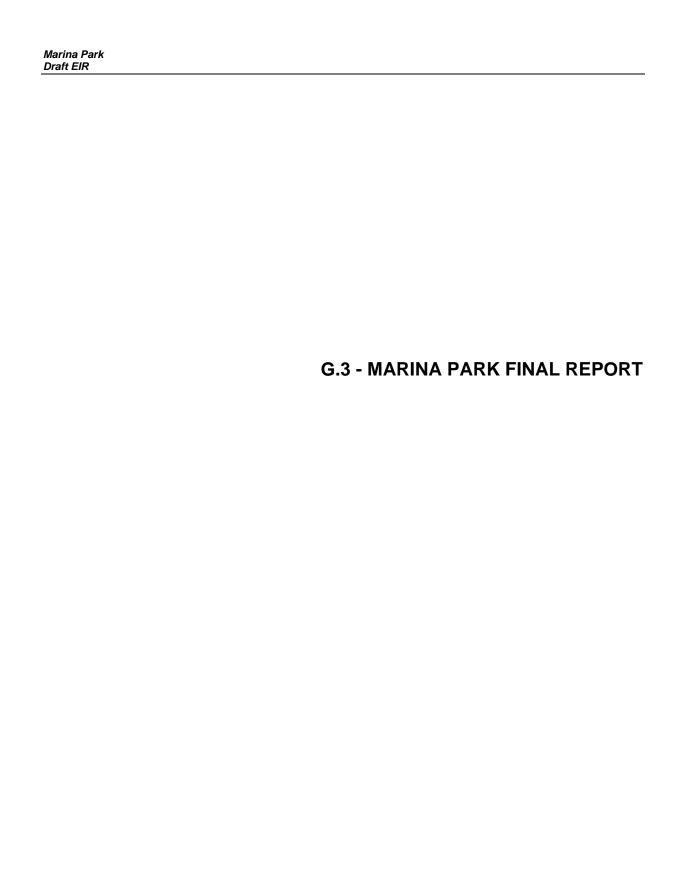
CERCLIS contains data on potentially hazardous waste sites that have been reported to the US EPA by states, municipalities, private companies and private persons. CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL. The database identified sites within the search radius as listed in Table 1 and summarized below:

Based on information obtained during the site visit and review of the database report, the identified CERCLIS site is located approximately 0.55 mile from the Property. Based on the distance, topographic location, and/or regulatory status, this facility is not considered a concern to the Property.

Emergency Response Notification System (ERNS)

Emergency Response Notification System (ERNS) records and stores information on reported releases of oil and hazardous substances. The database identified sites within the search radius as listed in Table 1 and summarized below:

Seven ERNS facilities were listed as unmapped sites in the FirstSearch report. These facilities cannot be plotted due to errors or missing information in the regulatory records. MBA reviewed the unmapped ERNS sites in the database report and determined the facilities are not considered a concern to the Property.


SPILLS

This database is provided by the California Regional Water Quality Control Board. The database identified sites within the search radius as listed in Table 1 and summarized below:

Based on information obtained during the site visit and review of the database report, all identified Spills sites are located at least 0.25 mile from the Property. Based on the distance, topographic location, and/or regulatory status, these facilities are not considered a concern to the Property.

Orphan Sites

Seven additional facilities were listed as unmapped sites in the FirstSearch report. These facilities cannot be plotted due to errors or missing information in the regulatory records. MBA reviewed the unmapped sites in the database report and determined the facilities are not considered a concern to the Property.

Dredged and Upland Material Evaluation for the Marina Park Master Plan Newport Beach, California

Final Report

PREPARED FOR: City of Newport Beach

Planning Department 3300 Newport Boulevard

Newport Beach, California 92663

PREPARED BY: NewFields

PO Box 216 4729 View Drive

Port Gamble, Washington 98364

February 2009

Executive Summary

The City of Newport Beach is in the process of preparing the Environmental Impact Report (EIR) and submitting permit applications in support of the Marina Park project, located on the Balboa Peninsula. The Marina Park project includes the expansion of existing beach areas and marina facilities, including the conversion of approximately 1.13 acres of uplands to a 28-slip marina. Sediment and soils throughout the proposed marina complex will be excavated to accommodate the project depth of -12 ft. MLLW plus a 2 ft. overdredge. Approximately 62,000 cubic yards (CY) of soil/sediment is proposed for removal. Approximately 5,000 CY representing the top five feet of soil in the upland area will be excavated and used for project fill and is not considered as part of the proposed dredge volume. Approximately 57,000 CY is proposed for aquatic disposal. The primary disposal options under consideration for the dredged materials are 1) beach nourishment under Regional General Permit Number 67 or individual permit for unconfined aquatic disposal as governed by the U.S. Army Corps of Engineers (USACE)/U.S. Environmental Protection Agency (USEPA) guidelines set forth in the Inland Testing Manual (ITM; USACE/USEPA 1998), and 2) ocean disposal at disposal site LA-3 based on guidance provided by the Ocean Testing Manual (OTM; USACE/USEPA 1991).

NewFields LLC conducted a dredged-material evaluation of the proposed dredged material from the Marina Park marina. The objective of this sampling and analysis program was to characterize the dredged materials from three dredged material management areas (Areas A, B, and C) within the Marina Park project area. Area A included that portion of the site currently occupied by the mobile home park and represented an estimated dredge volume of 21,328 cy with 2,370 cy of overdredge. Area B included that area currently occupied by the exposed beach above 0 ft MLLW, with an estimated volume of 13,869 cy with 2,849 cy of overdredge. Area C included that portion of the site that is below 0 ft. MLLW, with an estimated volume of 13,713 cy with 4,571 cy of overdredge. Sediment was also collected from the LA-3 Reference site. The reference sediment provided a point of comparison for material proposed for placement at the LA-3 ocean disposal site.

Sampling and Analysis

Sediment samples were collected from five stations in Area A and four stations in Area B using a direct-push corer on November 26, 2008. Samples from Area A were sampled from 5 ft. below the ground surface to a depth of -14.5 ft. MLLW (project depth plus a 2-ft overdredge and 0.5 ft. z-layer sample). The surface material (upper 5 ft.) was not included in the dredged material evaluation. Sediment samples from Area B included the surface sediment (beach sands) to a -14.5 ft MLLW. Sediment samples from Area C were collected from seven stations using a vibracorer sampler, sampling from the sediment surface (from -4 to -8 ft MLLW to -14.5 ft MLLW).

Each of the cores was divided into an upper and lower section. For Areas A and B, that division was based on the transition from recent sands to ancient Bay sand deposits. That layer generally occurred between 10 and 12 ft. below ground surface. For Area C, the upper composite represented more recently deposited fine sediments and the lower composite represented the coarser ancient Bay sand deposits. The upper section of each core within an area was combined into an upper area composite and each of the lower sections within an area was combined into a lower area composite.

NEWFIELDS E1

Sediment chemistry was evaluated for all upper and lower composites. Analytical chemistry included sediment conventionals (grain size, organic carbon, ammonia, sulfides, Atterberg limits, total recoverable petroleum (TRPH), oil and grease, metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc), organochlorine pesticides, polychlorinated biphenyls (PCBs), organotins, petroleum aromatic hydrocarbons (14 PAHs), and phthalates.

For the Area C upper and lower composites, Tier III biological tests were conducted, including benthic toxicity tests, water-column toxicity tests, and bioaccumulation tests. Benthic tests provided an estimate of toxicity to benthic organisms at the placement site and included 10-day acute tests with the amphipod, *Ampelisca abdita* and the polychaete, *Neanthes arenaceodentata*. Water-column tests were conducted with the suspended-particulate phase (SPP) to provide an estimate of toxicity to water column organisms exposed to sediment as it falls through the water column at the disposal site. It also provided an indication of water-column toxicity that might be encountered during the dredging process. SPP is the liquid portion of a 1:4 sediment/seawater slurry that is designed to simulate the dredging process. Water-column tests were conducted with a dilution series of 1% (larval test only), 10%, 50%, and 100% SPP for each of the test composites using fish, *Menidia beryllina*, the mysid, *Americamysis bahia*, and larval mussels (*Mytilus* sp.). Sediment from the LA-3 disposal site reference site (LA-3 Reference) was included in the benthic tests, but is not required for the SPP tests.

Bioaccumulation potential (BP) testing was conducted with both Area C composites, as well as LA-3 Reference. The bioaccumulation test evaluates the potential for uptake of chemical constituents in the sediment to tissues of benthic organisms at the placement site. The bioaccumulation tests were conducted as 28-d exposures with the clam, *Macoma nasuta*, and the polychaete worm, *Nephtys caecoides*. Following the 28-d test, tissues were analyzed for tissue residues. The chemistry analyte list for tissues exposed to the Area C composites included mercury and lipids.

Evaluation Criteria

Evaluation criteria were based on the ITM/RGP-67 guidance for nearshore placement and OTM guidance for open ocean placement at the LA-3 disposal site. Under the RGP-67 and ITM, sediment is suitable for beach nourishment projects or nearshore placement if the sediment is >80% sand and gravel, is free from chemical contamination, is not plastic (a measure of cohesiveness), and is not likely cause adverse aesthetic effects to the receiving beach. In order to determine whether test sediments were free of chemical contamination, chemical concentrations in test sediments were compared to National Oceanographic and Atmospheric Administration (NOAA) effects-based guidance values called Effects-Range Low (ERL) and Effects-Range Median (ERM). The ERL represents the 10th percentile in NOAA effects data base and the ERM represents the 50th percentile. While not criteria, these guidance values provide an indication of whether chemical concentrations are sufficient to predict benthic community effects. If the ERL/ERM values are exceeded, further biological testing might be required as directed by the ITM.

Under the OTM, sediment is suitable for placement in an open-ocean disposal site if it does not exceed the limiting permissible concentration (LPC) for the disposal site. The LPC is based on comparisons of the results of the sediment chemistry, toxicity tests, and bioaccumulation test in the test treatments with those of the LA-3 Reference site. Chemical concentrations were also screened using the NOAA ERL and ERM values. For benthic toxicity tests, the LPC was defined as no significant toxicity, relative to the LA-3 Reference and survival within 10% of the reference for the polychaete test and 20% for the amphipod test. For the SPP tests, the LPC was based on a comparison of survival or normal development (larval test only) in the 100% SPP of the test treatments with that of the control seawater. If there is a significant difference, then the median

NEWFIELDS E2

lethal concentration (LC_{50}) for the test treatments is compared with a modeled concentration of SPP at the boundary of the disposal site. Concentrations of targeted chemical analytes in the tissues exposed to test sediments are first compared to the tissues exposed to the LA-3 Reference sediment and second compared to guidance values from the Food and Drug Administration (FDA) and USEPA.

USEPA Region IX and the USACE-LA District will make the final determination of suitability.

Sediment Evaluation

The following section discusses each of the Area composites in context of the requirements for each of the disposal options.

Sediment in the upper composite from Area A (Comp A-U) was characterized by 96% sand and gravel and 0.15% TOC. Sediment from the upper Area B composite (Comp B-U) was also characterized by 96% sand and gravel, with 0.02% TOC. Sediment in the lower composites from Areas A and B (Comp A-L and Comp B-L) were very similar to each other and likely represented the same ancient Bay-sand layer. Sediments in the lower composites were >98% sand and gravel with <0.1% TOC. None of the Comp A or B sediments were plastic, indicating that they would not hold their form. All of the metals were either undetected or detected very near the detection limits. Pesticides, PCBs, tributyltin, TRPH, oil and grease, and phthalates were not detected in any of the four Area A and B composites. PAHs were either undetected or detected at very low concentrations (\leq 32 μ g/kg total PAHs).

Sediment from Areas A and B met the requirements for beach nourishment, as defined by the ITM and RGP-67. Both the upper and lower composites from Areas A and B were >95% sand and gravel, were free of contamination, and were not plastic. Additionally, sediment had low or no ammonia, sulfides and oil and grease, indicating that it would not have adverse aesthetic effects on the receiving beaches. This material would also meet the requirements for open-ocean disposal at LA-3, as defined by the OTM/ITM.

Sediment in Area C was comprised of either a thick layer of sand, overlying a silt layer, overlying the ancient Bay sands (in the nearshore portions of Area C) or by silts and clays overlying the ancient Bay sands (in the channel portion of Area C). Sediment in the upper composite from Area C (Comp C-U) was 77.9% sand, with 0.68% TOC. Silver and selenium were not detected in Comp C-U. All other metals were detected in Comp C-U sediments. With the exception of mercury, all metals were detected at concentrations below those of the LA-3 Reference sediment and below the ERL. Mercury was detected in Comp C-U at a concentration of 0.36 mg/kg, which is slightly above that of the LA-3 Reference site (0.10 mg/kg) and the ERL of 0.24 mg/kg, but below the ERM of 0.76 mg/kg. Pesticides, PCBs, tributyltin, TRPH, oil and grease, and phthalates were not detected in the upper Area C composite. PAHs were either undetected or were detected at very low concentrations, with total detected PAHs of 108 μ g/kg, well below the ERL of 4,022 μ g/kg.

Upper and lower segments of individual cores from Area C were also analyzed for mercury and sediment grain size. The upper segment from the cores in the nearshore portion of Area C was characterized as a mixture of sand and silt. Mercury concentrations ranged from undetected to 0.85 mg/kg. The upper segment of cores from the offshore portion of Area C was dominated by fine-grained silts and clays and mercury concentrations were higher, ranging from 1.11 to 3.35 mg/kg. The lower segments for both the nearshore and offshore stations were similar, dominated by sand with concentrations of mercury that were either undetected or detected at concentrations very near

NEWFIELDS E3

the detection limit. The upper silt layer that occurred in each of the cores was 2 to 3 ft thick and comprised relatively small portion of the material in the Area C-U composite.

Sediment from the lower Area C composite was very similar to the lower composites from Areas A and B, with 99% sand and 0.05% TOC. Metals were either undetected or detected very near the detection limits. Pesticides, PCBs, tributyltin, TRPH, oil and grease, phthalates, and PAHs were not detected in the Comp C-L.

Both Area C composites were evaluated for potential biological effects related to the dredging and placement of the proposed dredged material at the LA-3 disposal site. No toxicity was observed in either of the benthic tests. Amphipod survival ranged from 87% to 92% and polychaete survival ranged from 84% to 92%. No significant differences were observed between the test treatments and the LA-3 Reference for either test. No toxicity was observed in any of the SPP exposures, with >88% survival or normal development in all test treatments for each SPP test. There were no significant differences between the 0% and 100% treatments and no calculable LC₅₀ for any of the SPP test treatments.

Mercury was not detected in any of the tissues exposed to Comp C-L or LA-3 Reference. Mercury was either undetected or detected at the detection limit (0.01 to 0.013 mg/kg) in tissues exposed to Comp C-U. The mean tissue concentrations in clams and worms exposed to Comp C-U were within 20% of the detection limit, the standard margin of error for this analytical method. The tissues concentrations of mercury were also well below the FDA limit of 1.0 mg/kg and the risk-based guidance value of 0.3 mg/kg (USEPA 2000).

Sediment from the Area C upper composite would not meet the requirement for beach nourishment, with <80% sand and gravel. However, this material would meet the requirements for open-ocean disposal. With the exception of mercury, concentrations for chemicals of potential concern were either not detected or detected at concentrations below those of the LA-3 Reference site. Mercury was detected above the ERL, but below the ERM. No significant toxicity was observed in any of the biological tests and no significant bioaccumulation of mercury was observed in the bioaccumulation tests.

Sediment from the lower Area C composite met the requirements for beach nourishment and ocean disposal. However, this layer occurs close to the proposed dredge depth of -12 ft. MLLW and it is unlikely that the layer could be easily separated from the overlying sediment during dredging.

NEWFIELDS E4

TABLE OF CONTENTS

ACR	ONYMS	AND A	BBREVIATIONS	iii
1.0	INTRO	DUCTIO	N	1
	1.1	Backg	round and History	1
		1.1.1	Existing Soil and Sediment Characteristics	3
		1.1.2	Chemical Evaluations of Existing Soils and Sediments	4
2	METH	IODS		5
	2.1	Defini	tion of Areas and Sample Locations	6
	2.2	Overv	iew of Analyses	9
	2.3	Field (Collection Program for Soil/Sediment Core Samples	10
		2.3.1	Sampling Locations and Depths	10
	2.4		ent Sampling	11
		2.4.1	Core Collection	11
		2.4.2	Navigation	12
		2.4.3	Core Handling	12
		2.4.4	Sample Processing and Storage	12
		2.4.5	Shipping	12
		2.4.6	Decontamination of Field and Laboratory Equipment	13
	2.5	Bioass	say Testing	13
		2.5.1	Benthic Toxicity Tests	13
		2.5.2	Water-Column Tests	14
		2.5.3	Bioaccumulation Potential Tests	14
		2.5.4	Seawater for Bioassay Testing	15
	2.6	Qualit	y Assurance/Quality Control	15
	2.7	Physic	cal and Chemical Analysis	16
		2.7.1	Physical Analyses	16
		2.7.2	Sediment Chemistry	16
		2.7.3	Bioaccumulation Tissue Chemistry	18
		2.7.4	Quality Assurance/Quality Control	18
	2.8	Data R	Review, Management, and Analysis	19
		2.8.1	Data Review	19
		2.8.2	Data Analysis	19
3	RESU	ILTS		20
	3.1	Sampl	ing Results	20
	3.2	Physic	cal and Chemical Analysis of Sediment	23
		3.2.1	Physical Characteristics and Conventional Chemical Analysis	23
		3.2.2	Metals	24
		3.2.3	Organotins	25
		3.2.4	Polycyclic Aromatic Hydrocarbons	25
		3.2.5	Chlorinated Pesticides	26
		3.2.6	PCB Arocolors	27
		3.2.7	Phthalates	27
	3.3	Result	s of Benthic and Water-column Bioassays	28
		3.3.1	10-Day Benthic Amphipod Test	28
		3.3.2	10-Day Solid-Phase Polychaete Worm Test	30
		3.3.3	Results of the Water-Column Test with Menidia beryllina	32
		3.3.4	Results of the Water-Column Test with Americamysis bahia	34

NewFields

	3.4	3.3.5 3.3.6	Results of the SPP Test with Mytilus sp. Bioaccumulation Test Results Chemical Analysis	36 38 40
			Chemical Analysis	
4	Discu	SSION		41
REF	ERENCES	S		45
FIGU	JRES			
Figu			Marina Park Master Plan area (dashed line) and proposed marina within	2
Figu			recent samples collected near the proposed marina.	
			ation Locations	
_			s and Station Locations with Proposed Project Plan and	
			ymetry	
_		•	CPT (a,b) and Vibracore (c, d) samplers, Marina Park 2008	
Figu	re 6. Gene	eral Cha	racterization of Sediment in Cores from Marina Park	22
TAB	LES			
Tobl	a 1 1 Dot	o for co	il/sediment samples at Marina Park, May 2008	5
			sediment data, September 2007	
			signations for Chemical and Biological Analyses	
			gnations within Each Area, Marina Park 2008	
			Laboratories, Points of Contact, and Shipping Information	
			esting Proposed for Suitability Evaluations of Dredged Material	
			nd Physical Parameters, Analytical Methods, and Target Detection Limits	
			g Data, Marina Park 2008	
			Conventionals, Marina Park 2008	
			letals in Sediment, Marina Park 2008	
Table	e 3-4. Org	anotins i	in Sediment, Marina Park 2008	25
			diment, Marina Park 2008	
			Pesticides in Sediment, City of Newport 2008	
Table	e 3-7. PCE	3 Aroclo	rs in Sediment, City of Newport 2008	27
Table	e 3-8. Phth	nalates ir	n Sediment, City of Newport 2008	27
			nmary for the 10-day Benthic Test with A. abdita	
			of Water Quality for the 10-day Benthic Test with A. abdita	
			tion Summary for Ampelisca abdita	
			ummary for the 10-day Bnethic Test with N. arenaceodentata	
			of Water Quality, 10-Day Benthic Test with N. arenaceodentata	
			tion Summary for Neanthes areanaceodentata	31
			of Results for the Water-column Test with M. beryllina	
		-	of Water Quality for the Water-column Test with M. beryllina	
			tion Summary for Menidia beryllina	33
			of Results for the Water-column Test with A. bahia	
			of Water Quality Observations; Water-column Test with A. bahia	
1 aoi	5-20. Te	ու Condi	tion Summary for Americamysis bahia	55

NewFields

Table 3-21. Summary of Results for the Water-column Test with <i>Mytilus</i> sp	36
Table 3.22 Summary of Water Quality Observations, Water-column Test with <i>Mytilus</i> sp	36
Table 3-23. Test Condition Summary for <i>Mytilus</i> sp	
Table 3-24. Summary of <i>M. nasuta</i> and <i>N. caecoides</i> Survival 28-d Bioaccumulation Test	
Table 3-25. Summary of Water Quality for the 28- day Bioaccumulation Test	
Table 3-26. Test Condition Summary for <i>Macoma nasuta</i> and <i>Nephtys caecoides</i>	
Table 3-26. Summary of Mercury Concentrations in Tissues	

APPENDICES

- A Field Logs and Photographs of Cores
- B Chemistry Laboratory Reports
- C Benthic Test Data Sheets and Supporting Information
- D Water-Column Test Data Sheets and Supporting Information
- E Bioaccumulation Test Data Sheets and Supporting Information

NewFields iii

ACRONYMS AND ABBREVIATIONS

ARI Analytical Resources Incorporated

ASTM American Society for Testing and Materials

BP bioaccumulation potential CPT cone penetration test COC chain of custody

DGPS differential global positioning system

ERL effects range-low ERM effects range-medium

GC/MS gas chromatograph-mass spectrometry with selected ion monitoring

ICP-MS inductively coupled plasma emissions spectrometer equipped with a mass detector

ID identification

ITM Inland Testing Manual

LPC limiting permissible concentration

MLLW mean lower low water OTM Ocean Testing Manual

PAH polynuclear aromatic hydrocarbon

PCB polychlorinated biphenyl
PEL Probable effects level
POC point of contact

QA/QC quality assurance/quality control

QAP quality assurance plan
RGP regional general permit
SAP sampling and analysis plan
SIM selective ion method
SM Standard Methods

SOP standard operating procedure

SP solid phase

SPP suspended particulate phase STFATE Short Term Fate model

SVOC semivolatile organic compound

TBT tributyltin

TOC total organic carbon

TPH total petroleum hydrocarbon

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

NewFields NewFields Northwest LLC.

NEWFIELDS iv

UNITS OF MEASUREMENT

°C degree(s) Celsius

ft feet

 $\begin{array}{ll} \mu g/kg & \text{microgram}(s) \text{ per kilogram} \\ \mu g/L & \text{microgram}(s) \text{ per liter} \end{array}$

μm micrometer(s)

ng/kg nanogram(s) per kilogram

cm centimeter(s)

L liter m meter(s)

mg/kg milligram(s) per kilogram

mL milliliter(s)
mm millimeter(s)
ppb parts per billion
ppm parts per million
ppt parts per thousand
v/v volume per volume

CY cubic yards

NewFields

1.0 Introduction

The City of Newport Beach is in the process of preparing the Environmental Impact Report (EIR) for the CEOA process and submitting permit applications in support of the Marina Park project, located on the Balboa Peninsula. The Marina Park project includes the expansion of existing beach areas and marina facilities, including the conversion of approximately 1.13 acres of uplands to a 28-slip Sediment and soils throughout the proposed marina complex will be excavated to accommodate the project depth of 12 ft. MLLW plus a 2 ft. overdredge. Approximately 62,000 cubic yards (CY) of soil/sediment is proposed for removal. Approximately 5,000 CY representing the top five feet of soil in the upland area will be excavated and used for project fill and is not considered as part of the proposed dredge volume. Approximately 57,000 CY is proposed for aquatic disposal. The primary disposal options under consideration for the dredged materials are 1) beach nourishment under Regional General Permit Number 67 or individual permit for unconfined aquatic disposal as governed by the U.S. Army Corps of Engineers (USACE)/U.S. Environmental Protection Agency (USEPA) guidelines set forth in the Inland Testing Manual (ITM; USACE/USEPA 1998), and 2) ocean disposal at disposal site LA-3 based on guidance provided by the Ocean Testing Manual (OTM; USACE/USEPA 1991). Based on previous soil and sediment data collected by NewFields and Terra Costa from the site, the majority of the excavated material is expected to be available for on-site beach replenishment and expansion. It is also anticipated that a portion of the material will need to be disposed of either at the LA-3 ocean disposal site or upland, either as clean fill or as contaminated material.

The objective of this sampling and analysis program (SAP) is to characterize the dredged materials and upland excavation material from study units within the proposed marina area in the Marina Park Master Plan to determine environmental suitability for beach replenishment or ocean disposal. The material under consideration for ocean disposal will be tested based upon criteria outlined in the OTM (USEPA/USACE 1991) and the ITM (USACE/USEPA 1998).

1.1 BACKGROUND AND HISTORY

Newport Bay is a coastal embayment located adjacent to the City of Newport Beach, California. The Newport Bay area supports a variety of land uses including navigation, marine industry, private and public marinas, recreational activities, and residential uses. Upper and lower Newport Bay are estuarine and nearshore marine environments, supporting both resident and migratory fish and bird species as well as a variety of native plant species. In addition, San Diego Creek, which supports agricultural land use and provides habitat for aquatic and terrestrial ecosystems, flows into the upper reaches of Newport Bay.

The proposed Marina Park is located in Lower Newport Bay, on the bay side of the Balboa Peninsula between 15th and 18th Streets immediately north of West Balboa Boulevard (Figure 1). The site currently includes some recreational areas and mobile homes. The Marina Park Master Plan includes a 28-slip marina, a small-boat basin, and moorage for visiting vessels in the northeast corner of the site.

Figure 1. Location of Marina Park Master Plan area (dashed line) and proposed marina within Newport Bay.

NewFields 2

1.1.1 Existing Soil and Sediment Characteristics

The Balboa Peninsula was primarily formed from sand deposits overlying Bay sediments following a series of extreme storms in the 1860's. Subsequent dredging and construction has increased the size of the peninsula. In May 2008, the City conducted a geotechnical investigation of soils at the proposed Marina Park site (Terra Costa 2008). Terra Costa conducted soil borings (B-1 and B-2) and cone penetration tests (CPT-7 and CPT-12) at two locations within the footprint of the proposed marina. The cone penetration test (CPT) evaluated sediment type, as well as other physical features. The borings included a visual description at 5 ft intervals, as well as subsampling for grain size analysis.

The geotechnical survey characterized the project soils (upland mobile-home park and beach face) as follows:

"The site is underlain by hydraulic fill, bay deposits, and older alluvial deposits beyond the depths of our deepest exploratory drilling at 50 feet. These soil and geologic units are described below in order of increasing age.

<u>Hydraulic Fill Soils:</u> Our test borings indicate that the project site-area is generally underlain by from 5 to 6 feet of loose to medium dense, gray-brown, damp to wet, hydraulically placed sands and silty sands (SP/SM), with occasional shell fragments. It is likely that these relatively "clean" granular soils were placed as the result of dredging during one or more phases of the development of Newport Harbor. SPT blow counts within these artificially placed dry to saturated sands ranged from 7 to 25 blows per foot.

Bay Deposits: The hydraulic fill sands are typically underlain by a 2- to 2 ½ - foot-think soft to firm compressible sandy silt to silt clay bay mud, which is un turn underlain by relatively clean, medium dense, gray sands (SP/SM), with shells and shell fragments, characteristic of Holoceneage bay deposits below an elevation of approximately -2 to -3 feet. SPT blow counts within these clean, saturated, natural bay deposit sands range from 13 to 24 blows per foot."

The Bay Deposits extend to approximately project depth at -14 ft. MLLW. Groundwater elevations appeared to match tidal elevations in the Bay. A subsample of porewater from the borings indicated that the groundwater was at least 20‰. Samples may have been compromised by freshwater added to the sample hole used to facilitate the boring. Grain size analysis of the soil borings resulted in a similar characterization, with sand dominating throughout the area (Table 1-1).

Based on the results of the geotechnical investigation, the soils underlying the mobile-home park and neighboring beach are comprised of sand to silty sand, with shell fragments. Soils were either hydraulically-placed from dredging events, the result of deposition following historic storm events, or are Holocene-era sediments, representative of soils underlying much of Lower Newport Bay.

The sediments occupying the intertidal and subtidal portion of the proposed marina were characterized during a recent evaluation of West Lido Channel (Figure 2; Table 1-2). Marine sediments in the area appeared to be comprised of either all sand at the shallower stations (-6 to -8 ft. MLLW) or more recent deposits of fine-grained sediment overlying sand in the deeper stations (-10 to -15 ft. MLLW). While the surface material was determined to be too fine-grained to qualify for beach nourishment, the underlying sand appeared to be a distinctly different stratigraphic layer and would likely qualify for beach nourishment.

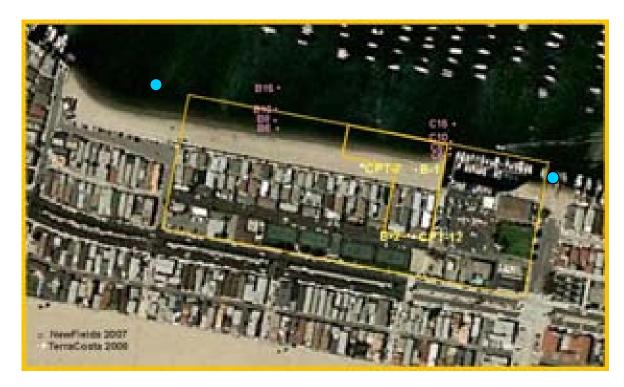


Figure 2. Locations of recent samples collected near the proposed marina. Existing stormwater outfalls denoted by blue circles.

1.1.2 CHEMICAL EVALUATIONS OF EXISTING SOILS AND SEDIMENTS

Concentrations of contaminants of concern were evaluated for the soils collected in borings B-1 and B-2, as well as the sediments in the neighboring channel areas (NewFields 2007).

The soil borings were evaluated for metals and DDT and associated breakdown products (Table 1), contaminants of concern that have been found in other portions of Newport Bay. Metals were present very near or below the detection limits and DDT, DDE, and DDD were undetected in both soil borings.

Marine sediments sampled in the subtidal portion of the proposed marina were evaluated for EPA priority pollutants (metals, petroleum aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated pesticides, and organotins) and did not show detected contaminants of concern, with the exception of mercury. Mercury was detected in some of the stations at concentrations exceeding the ERM (Long et.al. 1995). These concentrations appeared to be associated with the more recent, finer-grained material at the surface. Samples that were predominantly sand had lower mercury concentrations. The differences between the physical and chemical profiles of the surface and subsurface materials suggests evaluating the marine portion of this site as two separate upper and lower composites.

Locations of current stormwater outfalls are indicated in Figure 2. Land use of the site has been limited to residential activities and to the City's knowledge there are no reported major spills on the site.

Table 1-1. Data for soil/sediment samples at Marina Park, May 2008	Table 1-1.	Data for	soil/sediment	samples	at Marina	Park. May	<i>2</i> 008.
--	------------	----------	---------------	---------	-----------	-----------	---------------

Analyte	Units	B-1				В	-2			
Depth below surface	ft	5	10	15	20	25	5	10	20	30
Gravel	%	1.0	0.0	1.0	0.0	5.0	11.0	1.0	2.0	0.0
Sand	%	92.7	97.2	98.2	96.0	93.0	84.1	98.5	96.6	97.8
Silt & Clay	%	6.3	2.8	0.8	4.0	2.0	4.9	0.5	1.4	2.2
Analyte	Units			Composit	e		Sur	face	Subsu	ırface
4,4'-DDE	μg/kg			<2.0 U			<2.	0 U	<1.	9 U
4,4'-DDD	μg/kg			<2.0 U			<2.	0 U	<1.	9 U
4,4'-DDT	μg/kg			<2.0 U			<2.0 U		<1.9 U	
2,4'-DDT	μg/kg			<2.0 U			<2.0 U		<1.	9 U
2,4'-DDE	μg/kg			<2.0 U			<2.	0 U	<1.	9 U
2,4'-DDD	μg/kg			<2.0 U			<2.	0 U	<1.	9 U
Arsenic	mg/kg			<6 U			<6	U	<6	U
Cadmium	mg/kg			<0.2 U			<0.	2 U	<0.	2 U
Chromium	mg/kg			3.4			1	.6	3	.0.
Copper	mg/kg	3.6			2.8		1.2			
Lead	mg/kg	<2 U			<2 U <2 U		U	<2	U	
Mercury	mg/kg	<0.05 U			<0.0)4 U	<0.0)6 U		
Nickel	mg/kg	2			<1	U	<1	U		
Silver	mg/kg	<0.3 U			<0.	3 U	<0.	3 U		
Zinc	mg/kg			9				3	4	1

Table 1-2. Nearshore sediment data, September 2007.

Sample	Water Depth (ft below MLLW)	Core Depth (ft below MLLW)	Gravel & Sand (%)	Silt & Clay (%)	Mercury (μg/kg)
C6	5.4	7.7	97.0	3.0	0.11
C8	7.7	9.5	96.8	3.2	0.23
C10	9.9	11.7	67.3	32.7	2.60
C15	13.1	15.6	25.9	74.1	3.33
В6	6.1	8.7	86.8	13.2	0.37
B8	8.0	11.2	75.4	24.6	3.09
B10	11.6	14.1	70.9	29.1	2.22
B15	13.1	16.4	27.2	72.8	2.30

2 METHODS

The objective of this sampling and analysis program (SAP) was to characterize the proposed excavated and dredged materials in the proposed Marina Park marina to evaluate environmental suitability for beach nourishment and/or ocean disposal. Material under consideration for beach nourishment was tested based on criteria in the ITM (USACE/USEPA 1998) and requirements under Regional General Permit Number 67 for physical appearance, composition, and chemical concentrations. The material under consideration for ocean disposal was tested based upon criteria outlined in the OTM (USEPA/USACE 1991). Dredged material for ocean disposal from this project is proposed for disposal at the USEPA-designated LA-3 disposal site. Chemical and biological analysis were conducted with reference sediment concurrent to the test sediment evaluations.

2.1 Definition of Areas and Sample Locations

Core samples were collected from the upland and aquatic areas of the site to a depth of -12 ft MLLW (+2 ft overdredge) as shown in Figure 3. The project footprint was divided into three dredged material management areas, A, B, and C (Figures 2 and 3). Area A included that portion of the site currently occupied by the mobile home park. Area B included that area currently occupied by the exposed beach above 0 ft MLLW. Area C included that portion of the site that is below 0 ft. MLLW.

Five stations were sampled in Area A. The upper 5 ft. of soil from each Area A station was not included in this investigation, as the upper 5 ft. of soil within the mobile home park will be used as fill material during park construction. Each of the five cores was approximately 20 ft. in length, extending from approximately +5 ft. MLLW to -15 ft. MLLW. The estimated volume of proposed dredged material from Area A is 21,328 cy with 2,370 cy of overdredge.

Four stations were sampled for Area B. The entire core from each Area B stations was evaluated for aquatic disposal. Cores ranged from 15 to 21 ft in length, extending from the beach face (between +1 ft. MLLW) and +6 ft. MLLW) to project depth. The estimated volume of proposed dredged material from Area B is 13,869 cy with 2,849 cy of overdredge.

Seven stations were sampled for Area C. Cores ranged from 5 to 14 ft in length, extending from the sediment surface (between -1 ft. MLLW and - 10 ft. MLLW) to project depth. The estimated volume of proposed dredged material from Area C is 13,713 cy with 4,571 cy of overdredge.

As noted above, each of the cores was divided into an upper and lower section. For Areas A and B, that division was based on the transition from hydraulic fill material to historic Bay deposits. That layer generally occurred between 10 to 12 ft. below ground surface. For Area C, cores were based on apparent grain size with the upper composite representing the more recently deposited fine sediments and the lower composite representing coarser ancient Bay deposits. Each of the upper cores within an area was combined into an upper composite and each of the lower cores within an area will be combined into a lower Area composite. A more complete description of each core is provided in Section 3.1.

A sample of the "z-layer" was collected for each core. Z-layer samples include sediment from the 6" segment immediately underlying the proposed dredged material and are intended to represent the exposed sediment face once the dredging is completed. For this project, the Z-layer is comprised of material from -14 ft. MLLW to -14.5 ft. MLLW. Z-layer samples from each of the Area A and Area B cores were combined into one composite sample. Where possible, z-layer samples were collected from each core collected in Area C.

Sediment was also collected from the LA-3 Reference site. The reference sediment provides a point of comparison for material proposed for disposal at the LA-3 ocean disposal site. The coordinates for the LA-3 Reference collection site were as follows:

Latitude: 31° 31.70" N Longitude: 117 ° 51.30" W

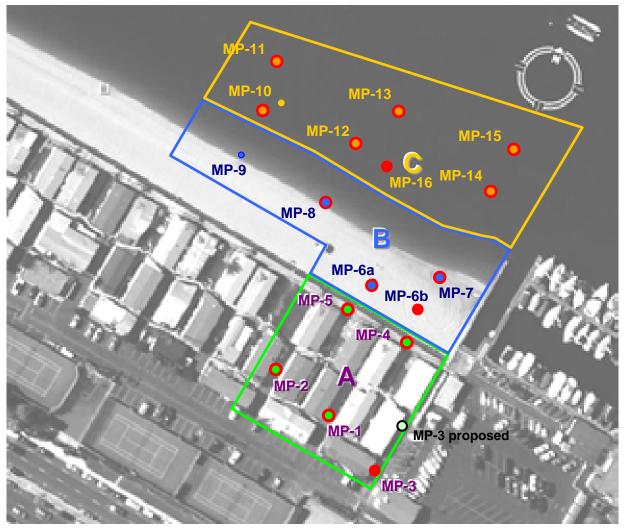


Figure 3. Area and Station Locations. Proposed locations denoted by green, blue and orange symbols. Actual locations denoted by red symbols.

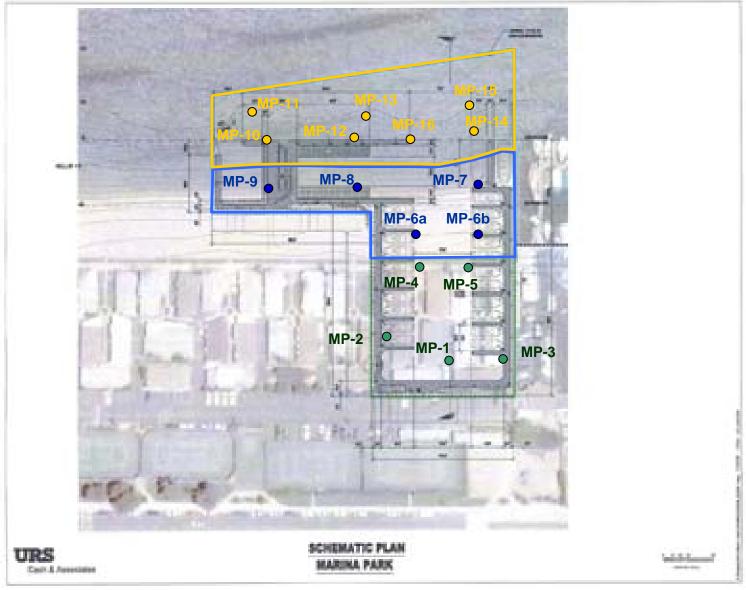


Figure 4. Project Areas and Station Locations with Proposed Project Plan and Current Bathymetry

2.2 OVERVIEW OF ANALYSES

Upper and lower composite samples from Areas A and B were analyzed for sediment grain size, total organic carbon, sediment conventionals, and sediment chemistry. The upper and lower composite samples from Area C were analyzed for sediment chemistry, as well as biological testing for toxicity and bioaccumulation. In addition, subsamples from the upper and lower segment of each individual core within Area C were analyzed for sediment grain size and mercury. Z-layer samples were archived for possible future analysis depending upon the dredged material evaluation.

Sediment grain size is critical to beach nourishment suitability determinations. Each composite and the reference sediment were processed for sediment conventionals (total solids, sediment grain size and total organic carbon), aesthetics (oil and grease, total recoverable petroleum hydrocarbons (TRPH) sulfides, and ammonia), and for plasticity (Atterberg test).

Chemical analysis was performed on each of the six test composites, as well as the LA-3 reference sediment. Chemical analysis of the test and reference material for each study unit included metals, organotins, chlorinated pesticides, PCBs, PAHs, and phthalates. Upper and lower portions of each individual core from the Area C composites were analyzed for sediment grain size and mercury. All analyses were performed following USEPA and USACE guidelines for beach nourishment and for ocean disposal (USEPA/USACE 1991, 1998). Subsamples of sediment from each station were also frozen for archive in case future chemical analysis is required on individual stations.

The two marine composites (C-upper and C-lower) were evaluated for potential biological effects related to the dredging and placement of the proposed dredged material at LA-3. Solid-phase tests provided an estimate of toxicity to benthic organisms at the disposal site. Benthic tests included 10-day acute tests with the amphipod, *Ampelisca abdita* and the polychaete, *Neanthes arenaceodentata*. Water-column tests were conducted with the suspended-particulate phase (SPP) to provide an estimate of toxicity to water column organisms exposed to sediment as it falls through the water column at the disposal site. It also provided an indication of water-column toxicity that might be encountered during the dredging process. SPP is the liquid portion of a 1:4 sediment/seawater slurry that is designed to simulate the dredging process. Water-column tests were conducted with a dilution series of 10%, 50%, and 100% SPP for each of the test composites. A 1% dilution was also tested during the larval exposures. Reference sediments are not included in the SPP test. SPP tests were conducted with the fish, *Menidia beryllina*, the mysid, *A. bahia*, and larval mussels (*Mytilus* sp.).

Bioaccumulation potential testing was performed on materials proposed for open ocean disposal. The bioaccumulation potential test was performed with a clam, *Macoma nasuta*, and a polychaete worm, *Nephtys caecoides*. The chemistry analyte list for these tissues was determined by sediment chemistry results.

2.3 FIELD COLLECTION PROGRAM FOR SOIL/SEDIMENT CORE SAMPLES

The sampling designated 15 stations for the collection of soil or sediment core samples within the three proposed study units. Marine sediment cores were collected with a vibracorer; upland soil/sediment coring was conducted by Gregg Drilling using continuous direct push coring. All core samples targeted a project depth of -12 ft MLLW (+2 ft overdredge).

2.3.1 SAMPLING LOCATIONS AND DEPTHS

Each station was given a unique identification code (MP-1 through 16). For the purposes of sample identification, stations were numbered sequentially. All study unit composites were denoted with the identifier "Comp" combined with the abbreviation for that study unit and a U or L denoting upper and lower composites. Composite titles were as follows:

Table 2-1. Sample Designations for Chemical and Biological Analysis

	Sample Designation			
Study Unit	Upper Composite	Lower Composite		
Upland	Comp A-U	Comp A-L		
Upland Beach	Comp B-U	Comp B-L		
Marine Aquatic	Comp C-U	Comp C-L		

The area and station identification numbers, approximate depths, and proposed compositing strategy are provided in Table 2-2.

Table 2-2. Station Designations within Each Area, Marina Park 2008

Area A Stations	Elevation / Water Depth (ft. MLLW)	Area B Stations	Elevation / Water Depth (ft. MLLW)	Area C Stations	Elevation / Water Depth (ft. MLLW)
MP-1	+9-10	MP-6a	+7-8	MP-10	-4
MP-2	+9-10	MP-6b	+7-8	MP-11	-9
MP-3	+9-10	MP-7	+3	MP-12	-5
MP-4	+9-10	MP-8	+3	MP-13	-8
MP-5	+9-10	MP-9	+3	MP-14	-7
				MP-15	-8
				MP-16	-5

2.4 SEDIMENT SAMPLING

Samples collected above 0 ft. MLLW were obtained by Gregg Drilling & Testing, Inc using a direct push coring technique. Marine sediment below 0 ft. MLLW was collected by NewFields and Weston staff using a vibracore sampler to obtain samples to project depth.

In addition to the project sediment, a reference sediment sample was collected from the USACE-USEPA approved reference sediment sampling location for LA-3. Reference sediment was collected using a stainless-steel dredge bucket. Control sediment was provided with the bioassay test organisms where appropriate (i.e., SPP tests do not use a control sediment). A sample of site water (approximately 100 L) was also collected from the Marina Park area for use in the 100% SPP concentrations for the SPP tests.

2.4.1 CORE COLLECTION

Upland cores were collected using a Warthog M1.5T track mounted drill rig in direct push mode (Figure 5). Cores were collected to project depth (+2 ft overdredge and 6" z-layer). Separate acetate liners were used for each core sample. Samples were collected in 4 ft. sections and the cut into 2 ft. sections and placed into a cooler. Samples were processed in the laboratory.

Marine sediment cores were collected using a 4-inch diameter vibracore deployed from a 25 ft. barge that allowed for sample collection in shallow nearshore waters. The vibracore is an aluminum tube attached to a vibrating head. A liner is inserted into the core barrel in order to keep the sample from coming in contact with the aluminum barrel. Once aboard the vessel, the core liner was removed from the core and the core was characterized for length and geotechnical characteristics.

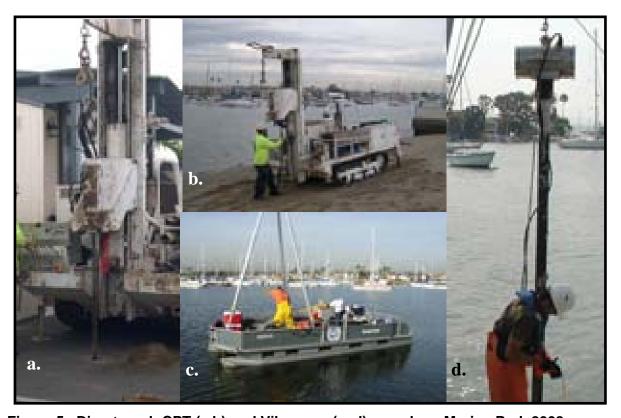


Figure 5. Direct-push CPT (a,b) and Vibracore (c, d) samplers, Marina Park 2008

2.4.2 NAVIGATION

Locations were determined using a combination of Global Positioning System (dGPS) and triangulation using visual landmarks and water depth. Actual sampling locations were recorded in the field logs.

2.4.3 CORE HANDLING

A representative core from each sample location was photographed and characterized for sediment characteristics. The core stratigraphy and other pertinent data and observations were logged. Each core was split into separate upper and lower samples for analysis based on sediment composition as described previously. The geologic description of each core included the apparent grain size, odor, color, length, and any evident stratification of the sediment.

Sediment from each station was placed into clean, food-grade—quality plastic bags, labeled (project name, date, sampler ID, analysis, and preservative where applicable), logged into a field chain-of-custody (COC) form, and placed into a cooler. Cores remained on ice and in the dark until shipped via overnight delivery service to the NewFields' laboratory in Port Gamble, Washington for processing.

2.4.4 SAMPLE PROCESSING AND STORAGE

Sample processing and composting was performed at NewFields' Port Gamble laboratory. Station samples were stored in the dark at 4 degrees Celsius (°C) until processed. Each station sample was homogenized to a uniform consistency at the laboratory using stainless steel spoons. Composites were generated by homogenizing all station samples from a given area as described in Section 2.1. Samples for physical and chemical analysis were placed into certified clean glass jars with Teflon-lined lids and shipped to the analytical laboratories. Sub-samples for archive were placed in certified clean glass jars with Teflon-lined lids and frozen at -20°C for possible future chemical analysis in the event that further delineation of chemical contamination is required. The remainder of the composite sample was analyzed for toxicity or, in the case of Composites A and B, stored at 4°C in case biological testing is determined to be needed.

2.4.5 SHIPPING

Prior to shipping, sample containers were placed in sealable plastic bags and securely packed inside coolers with ice packs or crushed ice. COC forms were filled out, and the original signed COC forms was placed in a sealable plastic bag and placed inside the cooler. The cooler lids were securely taped shut.

Samples were delivered to the analytical laboratories. Table 2-3 lists the laboratories, the particular analyses performed by each, and the point of contact and pertinent shipping information for each laboratory.

Table 2-3. Analytical Laboratories, Points of Contact, and Shipping Information

Laboratory	Analyses Performed	Point of Contact	Shipping Information
NewFields Northwest LLC.	SPP, SP testing and	Mr. William Gardiner	NewFields Northwest
	Bioaccumulation testing	Mr. Brian Hester	4729 NE View Drive
		(360) 297-6040	Port Gamble, WA 98364
Analytical Resources Inc	Sediment and	Ms. Sue Dunnihoo	Analytical Resources
	bioaccumulation tissue	(206) 695-6200	4611 S.134 th Pl, Suite 100
	chemistry		Tukwila, WA 98168

2.4.6 DECONTAMINATION OF FIELD AND LABORATORY EQUIPMENT

All coring equipment was cleaned prior to sampling. Between marine stations, core barrels and the deck of the vessel was rinsed with site water. Core tubes were cleaned between cores using biodegradable soap, a site water rinse and a deionized water rinse. Before creating each composite, all stainless steel utensils (stainless steel bowls, spoons, spatulas, mixers, and other utensils) were cleaned with soapy water, rinsed with tap water, and then rinsed three times with deionized water.

2.5 BIOASSAY TESTING

Samples were evaluated in accordance with procedures outlined in the OTM (USEPA/USACE 1991) to establish suitability for ocean disposal and the more recent procedures described in the Inland Testing Manual (ITM; USEPA and USACE 1998) and by the ASTM (2003a). This program included bioassay analysis of three project samples: two Area C composite samples and the LA-3 Reference sediment. In addition, appropriate laboratory control samples were run with each of the selected test species. Bioassay testing for this project consisted of two benthic toxicity tests, three water-column toxicity tests, and two bioaccumulation potential tests. The bioassays performed for this project are summarized in Table 2-4. Bioassay testing of materials began as soon as possible after the time of collection.

Table 2-4. Bioassay Testing Proposed for Suitability Evaluations of Dredged Material

Test Type	Type of Organism	Taxon	Project Sediments	Control Sediment/ Seawater	Reference ¹ Sediment	Reference ¹ Toxicant
	Bivalve larvae	Mytilus edulis	X^2	X		X
Water column	Fish	Menidia beryllina	\mathbf{X}^2	X		X
	Mysid shrimp	Americamysis bahia	\mathbf{X}^2	X		X
Benthic	Amphipod	Ampelisca abdita	X	X	X	X
Bentnic	Polychaete	N. arenaceodentata	X	X	X	X
Bioaccumulation	Bivalve	Macoma nasuta	X	X	X	
	Polychaete	Nephtys caecoides	X	X	X	

¹Shaded areas indicate tests or treatments that are not applicable to the selected tests.

2.5.1 BENTHIC TOXICITY TESTS

Benthic bioassays were performed to estimate the potential impact of ocean disposal of dredged material on benthic organisms that attempt to re-colonize the area. Dredge material was tested in 10-day benthic tests using two species: an amphipod species *Ampelisca abdita* and a polychaete, *Neanthes arenaceodentata*. Amphipod tests were conducted in accordance with procedures described in Appendix E of the ITM (USEPA/USACE 1998) and ASTM Standard E1367-99 (ASTM 2003c). Tests with the polychaete were conducted in accordance with procedures outlined in the ITM (USEPA/USACE 1998). Each sediment type (test, references, and control) was run with five replicates. Control sediment was sediment from the area where the organisms were collected (i.e., native sediment). Since *N. arenaceodentata* are cultured in the absence of sediment, clean sand from Newport, Oregon was used as control sediment for the 10-day polychaete test. This sediment has been used successfully in previous tests with *Neanthes*.

Test organisms were exposed to the sediment for ten days in 1-liter glass test chambers. Two centimeters of sediment (approximately 150 mL) was placed into each chamber with 800 mL of overlying water. Tests were conducted as static tests with no feeding. Initial stocking densities in each replicate were 20 organisms per test chamber for the amphipod test, and 5 organisms per test chamber

² Sediment elutriates of project material

for the polychaete test. Trickle-flow aeration was provided through glass pipettes, in such a way as to avoid disturbing the sediment surface. Water quality measurements were taken in one chamber from each test treatment daily and included pH, salinity, temperature, and dissolved oxygen. Ammonia was measured in both interstitial (pore water) and overlying water at the start and finish of the test from one replicate for each test sample. Sediment pore water was extracted via centrifugation. All instruments used were calibrated and logged daily. Using methods described in the OTM (USEPA/USACE 1991) the sediments were carefully sieved to remove the test organisms and then survivorship was assessed. To evaluate the relative sensitivity of the organisms, reference toxicity tests were performed using standard reference toxicants (Lee 1980).

2.5.2 WATER-COLUMN TESTS

Water column bioassay tests were performed to estimate the potential impact of ocean disposal of dredged material to organisms that live in the water column. The water-column test was performed using a 4:1 seawater to test dredged material suspended-particulate phase preparation (SPP). To make the SPP, dredged material from each composite was combined with dredging-area site seawater in a 4:1 ratio by volume, vigorously agitated for 30 minutes, and then centrifuged for approximately 10 min. at room temperature (16–18°C). Following centrifugation, the supernatant was gently decanted. This supernatant represented the 100% SPP test concentration and was used to create serial dilutions with clean seawater (0.45-µm-filtered Hood Canal seawater) to create subsequent test concentrations for the SPP tests. Three species were tested with the SPP: *Menidia beryllina* (inland silverside fish), *Americamysis* (formerly *Mysidopsis*) *bahia* (mysid shrimp), and *Mytilus* sp. (bivalve larvae).

For the shrimp and the fish, the SPP was tested at 100%, 50%, and 10% percent concentrations against a seawater control under static conditions. Each of these tests was conducted in accordance with procedures outlined in the ITM (USEPA/USACE 1998). Ten animals were used per replicate with five replicates per elutriate concentration. The test ran for 96 hours.

The bivalve larvae test was run on the test dredged material elutriates at 100%, 50%, 10%, and 1% dilutions, and a seawater control. The test was run for 48 hours, until development of the bivalve larvae to the D-hinge stage in the control. At the termination of the study, survival and normal development were compared between the control and test groups to determine if significant mortality or abnormal development existed.

Daily water quality monitoring of test chambers was carried out for pH, dissolved oxygen, salinity, and temperature. Ammonia was analyzed at the start of the test in the 100% concentration. Measurements in other concentrations were not performed as the readings in the 100% concentration were not greater than 4 mg/L total ammonia. To evaluate the relative sensitivity of the organisms, reference toxicity tests were performed using standard reference toxicants (Lee 1980).

2.5.3 BIOACCUMULATION POTENTIAL TESTS

Assessment of bioaccumulation potential was carried out using the polychaete worm *N. caecoides* and the bivalve *M. nasuta* over a 28-day test period on the marine composite samples and the LA-3 Reference sediment only. Bioaccumulation potential tests were conducted in accordance with those procedures outlined in *Guidance Manual: Bedded Sediment Bioaccumulation Tests* (USEPA 1993) and Appendix E of the ITM (USEPA/USACE 1998). Each of these tests was initiated using test and control sediment in the same manner as the 10-day benthic test. *N. caecoides* exposures were conducted using 60 animals in each of five replicate test chambers. For *M. nasuta* exposures, 25 animals were placed in each of five replicate test chambers. The test chambers were maintained under flow-through conditions, and daily water quality measurements were taken on each chamber. On Day 28, the sediment was sieved to remove the worms and clams. The surviving animals were placed in clean flow-through

aquaria to purge their gut contents for 24 hours, and then tissues were placed into certified-clean glass sample jars, frozen and then sent to the chemistry laboratory for tissue analysis

The analysis of bioaccumulation was made by statistically comparing tissue levels from the reference group to those of the test group for each species. The analysis will be conducted using Analysis of Variance, T-test, or non-parametric tests, depending on the assumptions of the individual tests (i.e., homogeneity of variance) as specified in the OTM (USEPA/USACE 1991). Contaminant concentrations found to be significantly elevated above reference were interpreted by comparing to FDA limits and USEPA risk-based guidance values.

2.5.4 SEAWATER FOR BIOASSAY TESTING

Seawater used in this study, including the flow-through tests, came from the Hood Canal at Port Gamble, Washington. Hood Canal seawater is continuously pumped through the NewFields facility. Seawater is filtered using a 25 μ m sand filter, with subsequent polishing with a 0.45- μ m filter for the toxicity tests. This seawater source has been used successfully on similar bioassay testing programs. Extensive testing on a variety of test species has shown that there is no significant potential for toxicity or bioaccumulation from this source.

2.6 QUALITY ASSURANCE/QUALITY CONTROL

The quality assurance objectives for toxicity testing are detailed in the OTM (USEPA/USACE 1991), ITM (USEPA/USACE 1998), and NewFields' laboratory quality assurance plans (QAPs). These objectives for accuracy and precision involve all aspects of the testing process, including the following:

- Water and sediment sampling and handling
- Source and condition of test organisms
- Condition of equipment
- Test conditions
- Instrument calibration
- Use of reference toxicants
- · Record keeping
- Data evaluation

Each test organism was evaluated in reference toxicant tests during the test period to establish the sensitivity of the test organisms. The reference toxicant LC_{50} or EC_{50} should fall within two standard deviations of the historical laboratory mean. Water quality measurements were monitored to ensure that they fall within target limits. All limits established for this program meet or exceed those recommended by USEPA.

The methods employed in every phase of the toxicity testing program are detailed in NewFields' Standard Operating Practices (SOP). All NewFields staff members receive regular, documented training in all SOPs and test methods. Finally, all data collected and produced as a result of these analyses were recorded on approved data sheets, which are part of the permanent data record of the program. If any aspect of a test deviated from protocol, the test was evaluated to determine whether it was valid according to the regulatory agencies responsible for approval of the proposed permitting action.

2.7 PHYSICAL AND CHEMICAL ANALYSIS

Physical and chemical parameters measured in this testing program were selected to provide data on potential chemicals of concern in the dredged material from the Marina Park site, in accordance with the OTM (USEPA/USACE 1991), ITM (USEPA/USACE 1998), and regional guidance. Test composites and reference sediment were analyzed for all of the analytes listed in Table 2-5. The target detection limits (sediment – dry weight) are also presented in Table 2-5. All analytical methods used to obtain contaminant concentrations follow EPA or Standard Methods (SM; APHA/AWWA 1998).

2.7.1 PHYSICAL ANALYSES

To characterize the physical properties of the sediment, tests were performed to determine the physical characteristics of the sediment for potential beach nourishment, to predict the behavior of sediment after disposal, and to compare reference and test sediment. Physical-chemical analyses of the sediment included grain size, specific gravity, total organic carbon (TOC), total solids, and plasticity (Atterberg Limits). Grain size was analyzed to determine the general size classes that make up the sediment (e.g., gravel, sand, silt, and clay) and the frequency distribution of the size ranges (reported in millimeters [mm]). Grain size measurements were conducted using the gravimetric procedure described in Plumb (1981). The TOC, made up of volatile and nonvolatile organic compounds, was determined as recommended in the OTM (USEPA/USACE 1991) or equivalent (modified SW846). This procedure involves dissolving inorganic carbon (carbonates and bicarbonates) with hydrochloric acid or sulfuric acid prior to TOC analysis (Plumb 1981). Total solids were also measured to convert concentrations of the chemical parameters from a wet-weight to a dry-weight basis. Percent solids was determined by USEPA Method 160.3 (USEPA 2001). Total petroleum hydrocarbons and total residual petroleum hydrocarbons (TRPH) were analyzed using EPA Method 1664. Atterberg limits were determined using ASTM D-4318.

2.7.2 SEDIMENT CHEMISTRY

The following analyses were performed as recommended by the ITM/OTM (USEPA/USACE 1998; 1991). The analysis for priority pollutant metals was conducted using an inductively coupled plasma emissions spectrometer equipped with a mass detector (ICP-MS), in accordance with USEPA 6010. Mercury analysis was conducted using cold vapor atomic absorption (CVAA) using EPA 7471A (USEPA 1994). The ammonia and dissolved sulfides analysis were conducted in conjunction with toxicity testing and followed SM4500-NH3F and N (APHA/AWWA 1998). Total sulfides were analyzed following PSEP (1986).

Semivolatile organics (SVOC; PAHs only) were analyzed using gas chromatography-mass spectrometry with selected ion monitoring (GC/MS SIM), using USEPA Method 8270 SIM (USEPA 2001). This followed serial extraction with methylene chloride and alumina cleanup procedures. Organochlorine pesticides and PCBs were analyzed using dual column GC/ECD following USEPA Method 8081 and 8082 respectively (USEPA 2001), with extraction modifications to reach lower detection limits. The PCBs were identified to the Aroclor level. The analytical method used to determine TBT involves methylene chloride extraction, followed by Grignard derivatization and analyzed by GC/MS (Krone et al., 1989).

Table 2-5. Chemical and Physical Parameters, Analytical Methods, and Target Detection Limits

Limits				
			Sediment Target	Tissue Target
Downwoodon	Mathad	D	Reporting Limit	Reporting Limit
Parameter	Method	Procedure al / Conventional Test	(dry weight)	(wet weight)
Grain Size	Plumb (1981)	Sieve/Pipette	1.0%	n/a
Atterberg Limits	ASTM D-4318	Sieve/1 ipette	1.070	n/a
TOC	ASTM D-4316 ASTM D2579	Combustion IR	0.1%	n/a
Percent Solids	EPA 160.3	Gravimetric	0.1%	n/a
Sulfides	PSEP 1986	Colorimetric	1.0 mg/kg	n/a
Oil and Grease	EPA 1664*	Gravimetric	1.0 mg/kg	n/a
TRPH	EPA 1664*	Gravimetric		n/a
Ammonia	SM 4500N H3F	ICP-MS	0.001 mg/kg	n/a
Lipids	Bligh Dyer	Gravimetric	n/a	0.1%
Zipido		Metals	11, 0	0.17,0
Arsenic (As)	USEPA 6010	ICP-MS	0.5 mg/kg	n/a
Cadmium (Cd)	USEPA 6010	ICP-MS	0.2 mg/kg	n/a
Chromium (Cr)	USEPA 6010	ICP-MS	0.5 mg/kg	n/a
Copper (Cu)	USEPA 6010	ICP-MS	0.5 mg/kg	n/a
Lead (Pb)	USEPA 6010	ICP-MS	1.0 mg/kg	n/a
Mercury (Hg)	USEPA 7471A	CVAA	0.05 mg/kg	0.01 mg/kg
Nickel (Ni)	USEPA 6010	ICP-MS	0.5 mg/kg	n/a
Selenium (Se)	USEPA 6010	ICP-MS	0.5 mg/kg	n/a
Silver (Ag)	USEPA 6010	ICP-MS	0.5 mg/kg	n/a
Zinc (Zn)	USEPA 6010	ICP-MS	4 mg/kg	n/a
		Pesticides	1 8 8	
4-4' DDD	USEPA 8081	GC/ECD	2 μg/kg	n/a
4-4'-DDE	USEPA 8081	GC/ECD	2 μg/kg	n/a
4-4'-DDT	USEPA 8081	GC/ECD	2 μg/kg	n/a
2-4' DDD	USEPA 8081	GC/ECD	2 μg/kg	n/a
2-4'-DDE	USEPA 8081	GC/ECD	2 μg/kg	n/a
2-4'-DDT	USEPA 8081	GC/ECD	2 μg/kg	n/a
Aldrin	USEPA 8081	GC/ECD	2 μg/kg 1 μg/kg	n/a
α-ВНС	USEPA 8081	GC/ECD	1 μg/kg	n/a
β-ВНС	USEPA 8081	GC/ECD GC/ECD	1 μg/kg 1 μg/kg	n/a
Chlordane	USEPA 8081	GC/ECD GC/ECD	2 μg/kg	n/a
δ-BHC	USEPA 8081	GC/ECD GC/ECD		n/a
		GC/ECD GC/ECD	1 μg/kg	
Dieldrin Endosulfan I	USEPA 8081 USEPA 8081	GC/ECD GC/ECD	2 μg/kg	n/a n/a
Endosulfan II	USEPA 8081	GC/ECD GC/ECD	1 μg/kg 2 μg/kg	n/a
Endosulfan Sulfate	USEPA 8081	GC/ECD GC/ECD	2 μg/kg 1 μg/kg	n/a
Endosultaii Sultate	USEPA 8081	GC/ECD GC/ECD	1 μg/kg 1 μg/kg	n/a
Endrin Aldehyde	USEPA 8081	GC/ECD GC/ECD	1 μg/kg 1 μg/kg	n/a
Heptachlor	USEPA 8081	GC/ECD GC/ECD	1 μg/kg 1 μg/kg	n/a
Heptachlor Epoxide	USEPA 8081	GC/ECD GC/ECD	1 μg/kg 1 μg/kg	n/a
γ-ВНС	USEPA 8081	GC/ECD GC/ECD	1 μg/kg 1 μg/kg	n/a
γ-BHC Methoxychlor	USEPA 8081	GC/ECD GC/ECD	10 μg/kg	n/a
Lindane	USEPA 8081	GC/ECD GC/ECD	10 μg/kg 1 μg/kg	n/a
Toxaphene	USEPA 8081	GC/ECD GC/ECD	100 μg/kg	n/a
TOTAPHOLIC	USLI A 0001	PCBs	100 μg/kg	π/α
Aroclor 1016	USEPA 8082	GC/ECD	4 μg/kg	n/a
Aroclor 1221	USEPA 8082	GC/ECD GC/ECD	4 μg/kg 4 μg/kg	n/a
Aroclor 1232	USEPA 8082	GC/ECD GC/ECD	4 μg/kg 4 μg/kg	n/a
Aroclor 1242	USEPA 8082	GC/ECD GC/ECD	4 μg/kg 4 μg/kg	n/a
Aroclor 1242 Aroclor 1248	USEPA 8082 USEPA 8082	GC/ECD GC/ECD	4 μg/kg 4 μg/kg	n/a
Aroclor 1254	USEPA 8082 USEPA 8082	GC/ECD GC/ECD	4 μg/kg 4 μg/kg	n/a
Aroclor 1260	USEPA 8082 USEPA 8082	GC/ECD GC/ECD	4 μg/kg 4 μg/kg	n/a
A10C101 1200	USEI A 0002	GC/ECD	+ μg/kg	11/ a

			Sediment Target Reporting Limit	Tissue Target Reporting Limit				
Parameter	Method	Procedure	(dry weight)	(wet weight)				
Semivolatile Organics								
Acenaphthene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Fluorene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Phenanthrene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Anthracene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Fluoranthene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Pyrene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Chrysene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Benzo(a)anthracene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Benzo(b)fluoranthene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Benzo(a)pyrene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Indeno(1,2,3-cd)pyrene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Dibenzo(a,h)anthracene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
Benzo(g,h,i)perylene	USEPA 8270	GC/MS SIM	7 μg/kg	n/a				
		Phthalates						
Diethylphthalate	USEPA 8270	GC/MS	20 μg/kg	n/a				
Dimethylphthalate	USEPA 8270	GC/MS	20 μg/kg	n/a				
Butylbenzylphthalate	USEPA 8270	GC/MS	20 μg/kg	n/a				
bis(2-Ethylhexyl) phthalate	USEPA 8270	GC/MS	20 μg/kg	n/a				
Di-n-octylphthalate	USEPA 8270	GC/MS	20 μg/kg	n/a				
Organotins								
Monobutyltin	Krone et al. (1989)	GC/MS SIM	10 μg/kg	n/a				
Dibutyltin	Krone et al. (1989)	GC/MS SIM	10 μg/kg	n/a				
Tributyltin	Krone et al. (1989)	GC/MS SIM	10 μg/kg	n/a				

%: percent

ng/kg: nanogram per kilogram μ g/kg: microgram per kilogram g/cc: gram per cubic centimeter

n/a: not applicable

GC/MS: gas chromatography/mass spectrometry

SIM: selected ion monitoring

* EPA Method 1664 is substituted for EPA 413.2

2.7.3 BIOACCUMULATION TISSUE CHEMISTRY

Tissue analysis was performed to determine the availability of sediment contaminants taken up by the test organisms. The chemical constituents for tissue analysis (including pre-exposure samples) were determined following a review of the sediment chemistry results, in consultation with USACE and USEPA. Based on sediment chemistry results, mercury and lipids were analyzed in test tissues. Tissue composites from each replicate were analyzed separately.

2.7.4 QUALITY ASSURANCE/QUALITY CONTROL

The QA objectives for chemical analysis conducted by the participating analytical laboratories are detailed in their Laboratory QA Manual(s). These objectives for accuracy and precision involve all aspects of the testing process, including the following:

- Methods and SOPs
- Calibration methods and frequency
- Data analysis, validation, and reporting
- Internal QC
- Preventive maintenance
- Procedures to ensure data accuracy and completeness

Results of all laboratory QC analyses are reported with the final data. Any QC samples that failed to meet the specified QC criteria in the methodology or QAP were identified, and the corresponding data was appropriately qualified in the final report.

All QA/QC records for the various testing programs will be kept on file for review by regulatory agency personnel.

2.8 DATA REVIEW, MANAGEMENT, AND ANALYSIS

2.8.1 DATA REVIEW

All data were reviewed and verified by participating team laboratories to determine whether all data quality objectives had been met, and that appropriate corrective actions had been taken, when necessary. NewFields' QA Officer or her delegate was responsible for the final review of all data generated.

2.8.2 DATA ANALYSIS

Data analysis consisted of tabulation and comparison with reference sites. Sandy sediments were also evaluated for suitability for use in beach nourishment under Regional General Permit 67 or under an individual permit. Marine sediments that did not qualify for beach nourishment, either due to grain size or the presence of contaminants were reviewed for open ocean disposal at LA-3. Biological results were compared to appropriate laboratory controls and reference results where applicable as designated in the OTM (USEPA/USACE 1991). Additional interpretation criteria are discussed in Section 4.

3 RESULTS

3.1 SAMPLING RESULTS

Sediment cores were collected from a total of 15 stations. Five stations were located in Area A, four stations were sampled in Area B, and six stations were sampled in Area C. With the exception of MP-9, samples were collected from each of the proposed stations. Station MP-3 was moved south from the proposed location due to a lack of access. Station MP-9 was replaced with Station MP-6b to provide a better indication of sediment in the upper beach area. In Area C, an additional station was sampled, Station MP-16, to provide a better indication of the deeper sediment in the nearshore portion of that area. Information on sample location, depth (MLLW), targeted core length; penetration depth and length of core recovered are included in Table 3.1. Reference samples were collected from LA-3 Reference on December 1, 2008. Field logs are presented in Appendix A. The approximate location of each sediment core is provided in Figure 1.2.

Samples from Areas A and B were collected using a direct-push CPT on November 26, 2008. Sediment was collected to the proposed sampling depth (14.5 ft. MLLW) for each of the Area A and B stations. In some cases, a void appeared in the core, generally one foot in length. This was caused by compaction of loose sands by the head of the CPT.

Subtidal samples in Area C were collected using a vibracorer on December 12, 2008. Penetration depths at each station were sufficient to reach the ancient Bay sand layer; however, refusal was observed at this layer for nearshore stations MP-10, MP-12, and MP-14. An additional station, Station MP-16, was sampled to determine the precise location of the ancient Bay sand layer and to retrieve sufficient material to characterize this layer for the nearshore portion of Area C. With the exception of Station MP-14, project depth (-12 ft. MLLW) was sampled for all stations within Area C. Stations located further offshore, Stations MP-11, MP-13, and MP-15, were sampled to the project depth plus the 2 ft. overdredge and the z-layer sample.

Sediment cores in Area A were generally characterized by sand overlying coarse sand (Figure 3.1). The boundary layer between the finer, more recent sands and the ancient-Bay sands was at approximately -4 to -5 ft. MLLW. Area B included lighter beach sands overlying the upper layer, gray sands, overlaying the coarser deep sands. As with Area A, the boundary between the finer sands and coarser sands occurred between -4 to -5 ft. MLLW, with the exception of Station MP-7, with the boundary was observed at -7 to -8 ft MLLW. Sediment in the nearshore portion of Area C differed from that of the channel stations further offshore. In the nearshore area, sands similar to the surface sands in Area B were found overlaying a moderately compacted silt/clay layer, overlaying the ancient Bay sand. A similar sediment composition was observed at the western portion of the channel stations, Station MP-11. The sediments observed at Stations MP-13 and MP-15 were generally characterized by silts and clays overlaying the ancient Bay sands.

Each of the cores was split into an upper and lower section at the boundary with the ancient Bay sands. The upper sections within each area were composited to create an upper Area composite and the lower sections within each area were composited to create a lower Area composite. In addition, the upper and lower sections from each core were either archived for possible future analysis (Areas A and B) or submitted for mercury and grain size analysis (Area C).

Table 3-1. Sample Log Data, Marina Park 2008

		Coord	dinates		Target	Actual	
Sito	Core	Latitude (°N)	Longitude (°W)	Depth	Core Length	Core Length	Comments
Site	Туре	(,	. ,	(ft MLLW)	(ft)	(ft)	Comments
		1	,	Area A		T	
MP-1	CPT	33° 36.474	117° 55.325	+ 9 to 10	20	20	
MP-2	CPT	33° 36.479	117° 55.338	+ 9 to 10	20	20	Upper 4 to 5 feet above core not
MP-3	CPT	33° 36.469	117° 55.312	+ 9 to 10	20	20	included in analysis; top of 20
MP-4	CPT	33° 36.492	117° 55.310	+ 9 to 10	20	20	ft. core is at +4 to 5 ft MLLW
MP-5	CPT	33° 36.494	117° 55.326	+ 9 to 10	20	20	
			,	Area B			
MP-6a	CPT	33° 36.498	117° 55.325	+ 6	20	20	
MP-6b	CPT	33° 36.495	117° 55.313	+ 6	20	20	Surface sediment
MP-7	CPT	33° 36.507	117° 55.312	+ 3 to 4	18	18	from beach included in core.
MP-8	CPT	33° 36.510	117° 55.336	+ 3 to 4	18	18	
MP-9	VC	33° 36.515	117° 55.361	+ 1	16	3.0	Refusal at 3'; 3 attempts; unable to sample with VC
			,	Area C			
MP-10	VC	33° 36.525	117° 55.363	- 4.1	10.4	8.0	Refusal at -12.0'; 0.5 ft. sand lost from cutter head
MP-11	VC	33° 36.527	117° 55.362	- 7.5	7.0	7.0	
MP-12	VC	33° 36.519	117° 55.332	-5.0	9.5	7.0	Refusal at -12.0'; approximately 1.0 ft. of sand lost from cutter head
MP-13	VC	33° 36.532	117° 55.335	-8.5	6.5	6.5	
MP-14	VC	33° 36.525	117° 55.308	-5.5	9.0	6.0	Refusal at -11.5; 0.5 ft. sand lost from cutter head
MP-15	VC	33° 36.539	117° 55.305	-6.5	7.9	7.9	
MP-16	VC	33° 36.521	117° 55.327	-5.1	9.5	8.5	Refusal at -13.5'

Donth		Δ	rea	A			Are	а В				A	rea	С			
Depth	1	2	3	4	5	6a	6b	7	8	10	12	14	16	11	13	15	
10																	10
9																	9
8	SN	SZ	SN	S	S												8
7																	7
6						T	T										6
5		SN			Š												5
4		z						_	_								4
3								T {{\}}}	T }}								3
2					(2000000) 												2
1	XXXXXXX				SZ		S										1
0	S	SS.				××××											0
-1		***															-1
-2 -3																	-2
				ğ ••••••	∑												-3
-4	SN	*******								Т							-4
-5											Т	Т	Т				-5
-6					S	δ											-6
-7					ecces:											Т	-7
-8														T	Т		-8
-9										~~~							-9
-10														9090000			-10
-11												iototos			~~~		-11
-12										****		\$\$\$\$\$		***			-12
-13										SN		N Z					-13
-14										Ż	SS		S				-14
-15		222222	elelele	707070	gegege:								SZ				-15

NS: no sample

Figure 6. General Characterization of Sediment in Cores from Marina Park.

NewFields 22

3.2 Physical and Chemical Analysis of Sediment

Physical characterizations and conventionals analysis of all composites and the reference sample included grain size determination, total organic carbon (TOC) content, percent total solids, oil and grease, total recoverable petroleum, total ammonia and sulfides, and Atterberg limits. Chemical characterizations included metals, organotins, PAH's, chlorinated pesticides, PCB aroclors, and phthalates. Results of these characterizations are summarized in the following sections.

3.2.1 Physical Characteristics and Conventional Chemical Analysis

Physical characteristics of composites and the reference sample are shown in Table 3-2. Area A and B composites, as well as Comp C-L, were >95% sand and gravel, with very little fine sediment. Comp C-U was comprised of approximately 78% sand, with approximately 22% silt and clay. The LA-3 Reference site was predominantly silt with 29.6% clay and only 3.2% sand.

TOC content was generally low in the A and B composites, ranging from 0.02% - 0.15% TOC. Comp C-U was somewhat higher with 0.68% TOC content. The reference sample had TOC content of 1.8%. Oil and grease and TRPH were below detection levels in all samples. Total ammonia levels were generally low or undetected (<0.1 to 1.2 mg/kg total ammonia), with the highest concentration in the test composites being 14.8 mg/kg total ammonia in Comp C-U. The total ammonia concentration in the LA-3 Reference sediment was 4.8 mg/kg total ammonia. Sulfides were detectable only in Comp A-U and Comp B-L, with 7.56 and 4.25 mg/kg respectively.

All composites and the reference were analyzed for plasticity using the Atterberg test. Area A and B composites and Comp C-L displayed no plasticity. The Atterberg limits found for the LA-3 Reference and Comp C-U were 30.3 and 16.9 cm respectively.

Table 3-2. Summary of Conventionals, Marina Park 2008

Analyte				Compos	ites		
Analyte	LA-3	A-U Comp	A-L Comp	B-U Comp	B-L Comp	C-U Comp	C-L Comp
Gravel (%)	0.0	2.2	9.6	2.3	5.2	0.0	3.7
Sand (%)	3.2	93.6	89.7	93.6	93.0	77.9	95.3
Silt (%)	67.2	2.6	0.7	2.7	1.8	10.5	1.0
Clay (%)	29.6	1.6	<1 U	1.5	<1 U	11.6	0.0
Total Organic Carbon (%)	1.8	0.15	0.08	0.02	0.02	0.68	0.05
Total Solids (%)	43.5	84.6	90.3	89.3	86.6	76.2	87.4
Oil and Grease (mg/kg)	<450U	<230 U	<215 U	<218 U	<226 U	<262 U	<221 U
TRPH (mg/kg)	<450U	<230 U	<215 U	<218 U	<226 U	<262 U	<221 U
Total Ammonia (mg/kg)	4.8	1.2	0.11	0.2	<0.10 U	14.5	<0.5
Total Sulfides (mg/kg)	NM	7.56	<1.20 U	<1.16 U	4.25	NM	NM
Atterberg Limits (cm)	30.3	Not Plastic	Not Plastic	Not Plastic	Not Plastic	16.9	Not Plastic

NM: Not Measured

U: Undetected. Actual concentration below reported concentration

3.2.2 METALS

The test composites and the reference sample were analyzed for the presence of ten different metals (Table 3-3). Selenium and silver were not detected in any of the samples. With the exception of mercury, all detected metals concentrations in the test composites were below those of LA-3 Reference. With the exception of mercury in Comp C-U and chromium in Comp C-U and LA-3 Reference, metals concentrations in test samples were well below the effects range- low (ERL). Chromium was found at concentrations of 12.4 and 40 mg/kg, above the ERL (8.1 mg/kg), but well below the effects rangemedian (ERM, 370 mg/kg). The mercury concentration in Comp C-U was 0.36 mg/kg, which was above the ERL (0.15 mg/kg) but below the ERM (0.71 mg/kg).

Upper and lower sections from the individual cores in Area C were analyzed for mercury concentrations (Table 3-3). In the upper cores collected from the nearshore stations (MP-10, 12, 14, and 16), mercury concentrations ranged from 0.10 to 0.85 mg/kg. In sediment collected from the channel stations, the mercury concentrations in the upper sections were 1.11 mg/kg and 3.35 mg/kg for Stations MP-13 and MP-15, respectively. Mercury was not detected in any of the lower sections from either the nearshore stations or channel stations.

Table 3-3. Inorganic Metals in Sediment, Marina Park 2008

				Composites							
Analyte	ERL	ERM	LA-3	A-U Comp	A-L Comp	B-U Com	B Co	_	C-U Comp	C-L Comp	
Arsenic	8.2	70	5.5	2.0	2.1	2.2	1.	9	3.7	2.1	
Cadmium	1.2	9.5	0.9	<0.2 U	<0.2 U	0.2	<0	2 U	0.4	<0.2 U	
Chromium	8.1	370	40	4.0	2.2	3.0	3.	2	12.4	2.8	
Copper	34	270	22	2.0	1.0	3.7	2.	4	18.3	1.2	
Lead	46.7	218	13	<2 U	<2 U	5	<2	U	9.0	<1 U	
Mercury	0.15	0.71	0.10	<0.05 U	<0.06 U	0.05	<0.0)5 U	0.36	<0.5 U	
Nickel	20.9	51.6	24	3	<1 U	2	2	2	9.2	1.9	
Selenium	NA	NA	<1 U	<0.2 U	<0.2 U	<0.2 l	J <0	2 U	<0.6 U	<0.6 U	
Silver	1.0	3.7	<0.4 U	<0.3 U	<0.3 U	<0.3 U <0.3		3 U	<0.2 U	<0.2 U	
Zinc	150	410	83	10	6	11	6	6	44	6	
	Hg	Hg	N	/lercury (Concent	ration	s in C	ores	s (mg/k	g)	
Section	ERL	ERM	MP-10	MP-12	MP-	14 N	IP-16	М	P-13	MP-15	
Upper Section	0.15	0.71	0.10	0.31	0.8	5	0.07	1	1.11	3.35	
Lower Section	0.15	0.71	<0.06 U	<0.07 l	J <0.06	S U <0).05 U	<0	.05 U	<0.05 U	

U: Undetected. Actual concentration below reported concentration No data for MP-11.

3.2.3 ORGANOTINS

Tributyltin was not detected in any of the test composites (Table3-4). No organotins were observed in Comps C-U or C-L, or in the LA-3 Reference. Monobutyltin and dibutyltin was detected in the area A and B composites.

				Comp	osites				
Analyte	LA-3	A-U Comp	A-L Comp	B-U Comp	B-L Comp	C-U Comp	C-L Comp		
Tributyltin	<3.8 U	<3.6 U	<3.4 U	<3.6 U	<3.6 U	<3.6 U	<3.7 U		
Dibutyltin	<5.6 U	14	15	13	19	<5.3 U	<5.6 U		
Monobutyltin	<4.0 U	<4.0 U 5.5 4.5 <3.4 U 6.1 <3							

U: Undetected. Actual concentration below reported concentration

3.2.4 POLYCYCLIC AROMATIC HYDROCARBONS

Each of the test composites and the reference sample were analyzed for the presence of PAHs (Table 3-5). None of the 16 PAHs were detected in either the upper or lower composites from Area A or Comps B-L or C-L. Concentrations of some PAHs were observed above reporting limits in Comps B-U and C-U. However, these concentrations were quite low and were below the PAHs concentrations observed in sediment from LA-3 Reference. The total detected PAHs were 32.7 μ g/kg and 108.1 μ g/kg in Comps B-U and C-U, respectively. Concentrations observed in the test composites were well below the ERL (4,022 μ g/kg).

Table 3-5. PAHs in Sediment, Marina Park 2008

				Compo	sites		
Analyte	LA-3	A-U Comp	A-L Comp	B-U Comp	B-L Comp	C-U Comp	C-L Comp
Acenaphthylene	<4.8 U	<4.9 U	<4.7 U	<4.8 U	<4.9 U	<4.8 U	<4.5 U
Acenaphthene	<4.8 U	<4.9 U	<4.7 U	<4.8 U	<4.9 U	<4.8 U	<4.5 U
Fluorene	<4.8 U	<4.9 U	<4.7 U	<4.8 U	<4.9 U	<4.8 U	<4.5 U
Phenanthrene	<4.8 U	<4.9 U	<4.7 U	<4.8 U	<4.9 U	<4.8 U	<4.5 U
Anthracene	<4.8 U	<4.9 U	<4.7 U	<4.8 U	<4.9 U	<4.8 U	<4.5 U
Fluoranthene	8.7	<4.9 U	<4.7 U	<4.8 U	<4.9 U	15	<4.5 U
Pyrene	11	<4.9 U	<4.7 U	<4.8 U	<4.9 U	19	<4.5 U
Benz[a]anthracene	<4.8 U	<4.9 U	<4.7 U	<4.8 U	<4.9 U	6.3	<4.5 U
Chrysene	5.8	<4.9 U	<4.7 U	5.8	<4.9 U	7.8	<4.5 U
Benzo[b]fluoranthene	5.3	<4.9 U	<4.7 U	4.8	<4.9 U	12	<4.5 U
Indeno[1,2,3-c,d]pyrene	<4.8 U	<4.9 U	<4.7 U	7.7	<4.9 U	12	<4.5 U
Dibenz[a,h]anthracene	<4.8 U	<4.9 U	<4.7 U	<4.8 U	<4.9 U	<4.8 U	<4.5 U
Benzo[g,h,i]perylene	4.8	<4.9 U	<4.7 U	9.6	<4.9 U	20	<4.5 U
Benzo[a]pyrene	5.3	<4.9 U	<4.7 U	4.8	<4.9 U	16	<4.5 U
Total Detected PAHs	40.9	0	0	32.7	0	108.1	0

U: Undetected. Actual concentration below reported concentration

ERL: 4,022 μg/kg

3.2.5 CHLORINATED PESTICIDES

Each composite and the reference sample were analyzed for a suite of chlorinated pesticides. The results are summarized in Table 3-6. There were no concentrations found above the reporting limits in any of the test composites.

Table 3-6. Chlorinated Pesticides in Sediment, Marina Park 2008

		Composites									
		A-U	A-L	B-U	B-L	C-U	C-L				
Analyte	LA-3	Comp	Comp	Comp	Comp	Comp	Comp				
2,4'-DDD	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.9 U				
2,4'-DDE	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.9 U				
2,4'-DDT	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.9 U				
4,4'-DDD	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.9 U				
4,4'-DDE	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.9 U				
4,4'-DDT	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	<1.9 U				
Total Detected DDTs	0	0	0	0	0	0	0				
Aldrin	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
BHC-alpha	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
BHC-beta	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
BHC-delta	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
BHC-gamma (Lindane)	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
Chlordane-alpha	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
Chlordane-gamma	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
Oxychlordane	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
Total Detectable Chlordane	0	0	0	0	0	0	0				
Dieldrin	<2.0 U	<0.97U	<0.98U	<0.99U	<0.98U	<2.0U	<1.9U				
Endosulfan Sulfate	<2.0 U	<0.97U	<0.98U	<0.99U	<0.98U	<2.0U	<1.9U				
Endosulfan-I	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
Endosulfan-II	<2.0 U	<0.97U	<0.98U	<0.99U	<0.98U	<2.0U	<1.9U				
Endrin	<2.0 U	<0.97U	<0.98U	<0.99U	<0.98U	<2.0U	<1.9U				
Endrin Aldehyde	<2.0 U	<0.97U	<0.98U	<0.99U	<0.98U	<2.0U	<1.9U				
Heptachlor	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
Heptachlor Epoxide	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
Methoxychlor	<9.8 U	<9.7 U	<9.8U	<9.9U	<9.8U	<9.8U	<9.4U				
Mirex	<0.98 U	<0.97U	<0.98U	<0.99U	<0.98U	<0.98U	<0.94U				
Toxaphene	<98 U	<97 U	<98U	<99U	<98U	<98U	<94U				

U: Undetected. Actual concentration below reported concentration

3.2.6 PCB AROCOLORS

Each composite and the reference sample were analyzed for seven PCB aroclors. The results are summarized in Table 3-7. There were no concentrations found above the reporting limits in any of the test composites.

3.2.7 PHTHALATES

Each composite and the reference sample were analyzed for 5 phthalates. The results are summarized in Table 3-8. There were no concentrations found above the reporting limits in any of the test composites.

Table 3-7. PCB Aroclors in Sediment, Marina Park 2008

		Composites										
Analyte	LA-3	A-U A-L B-U B-L C-U Comp Comp Comp C										
Aroclor 1016	<20 U	<20 U	<20 U	<20 U	<20 U	<20 U	<19 U					
Aroclor 1242	<20 U	<20 U	<20 U	<20 U	<20 U	<20 U	<19 U					
Aroclor 1248	<20 U	<20 U	<20 U	<20 U	<20 U	<20 U	<19 U					
Aroclor 1254	<20 U	<20 U	<20 U	<20 U	<20 U	<20 U	<19 U					
Aroclor 1260	<20 U	<20 U	<20 U	<20 U	<20 U	<20 U	<19 U					
Aroclor 1221	<20 U	<20 U	<20 U	<20 U	<20 U	<20 U	<19 U					
Aroclor 1232	<20 U	<20 U	<20 U	<20 U	<20 U	<20 U	<19 U					
Total Detected PCBs	0	0	0	0	0	0	0					

U: Undetected. Actual concentration below reported concentration

Table 3-8. Phthalates in Sediment, Marina Park 2008

			Composites										
Analyte	LA-3	A-U Comp	A-L Comp	B-U Comp	B-L Comp	C-U Comp	C-L Comp						
Dimethylphthalate	<20 U	<20 U	<19 U	<20 U	<20 U	<19 U	<19 U						
Diethylphthalate	<20 U	<20 U	<19 U	<20 U	<20 U	<19 U	<19 U						
Butylbenzylphthalate	<20 U	<20 U	<19 U	<20 U	<20 U	<19 U	<19 U						
bis(2-Ethylhexyl)phthalate	<20 U	<20 U	<19 U	<20 U	<20 U	<19 U	<19 U						
Di-n-Octyl phthalate	<20 U	<20 U	<19 U	<20 U	<20 U	<19 U	<19 U						

U: Undetected. Actual concentration below reported concentration

3.3 RESULTS OF BENTHIC AND WATER-COLUMN BIOASSAYS

This section presents a summary of bioassays conducted in support of the EIR for the Marina Park project. Results for each replicate, all water quality observations, statistical analysis, and bench sheets for each test are provided in Appendix C.

3.3.1 10-DAY BENTHIC AMPHIPOD TEST

The 10-d amphipod test with *Ampelisca abdita* was initiated on December 19, 2008. A summary of test results, water quality observations and an overall summary of the test are presented in Tables 3-9 to 3-11. The test was validated by 90% survival in the controls. The LC_{50} for the cadmium reference-toxicant test was 0.54 mg Cd/L, within the control chart limits (0.13 – 1.09 mg Cd/L), indicating that the test animals were similar in sensitivity to previous populations used at the NewFields laboratory.

Temperature and salinity were slightly outside the target range in all treatments except for the control. Deviations were generally less than one unit (°C or ppt) and did not appear to have an effect on the test organism survival. Ammonia levels were below NOEC (approximately 20 mg/L total ammonia) for all treatments.

Mean percent survival in LA-3 Reference was 92.0%. In Comp C-U and Comp C-L survival was 87.0 and 89.0% relatively. There was no significant difference between test treatments and the reference.

Table 3-9. Survival Summary for the 10-day Benthic Test with A. abdita

Treatment	Mean Percentage Survival	SD
Control	90	3.5
LA-3 Reference	92	2.7
Comp C-U	87	7.6
Comp C-L	89	4.2

Table 3-10. Summary of Water Quality for the 10-day Benthic Test with A. abdita

Treatment Dissolved Ox (mg/L)					pH (units)			Salinity (ppt)				
	Mean	Mean Min Max M		Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	6.3	5.3	7.3	19.1	18.6	19.5	8.1	7.7	8.5	30.2	29.0	32.0
LA-3 Reference	6.7	5.7	7.7	19.2	18.3	19.6	8.1	7.8	8.4	32.6	31.0	36.0
Comp C-U	6.6	5.5	8.0	19.2	17.8	19.6	8.1	7.7	8.3	32.1	31.0	35.0
Comp C-L	6.7	5.8	8.0	19.2	18.0	19.6	8.1	7.8	8.3	32.2	31.0	35.0

Table 3-11. Test Condition Summary for Ampelisca abdita

Test Conditions: A. abdita							
Sample Identification	LA-3 Ref, Comp C-L, Con	ър C-U					
Date sampled	12/8/2008						
Date received	12/13/2008						
Sample storage	4°C, dark						
Weeks of holding	1 week						
Control sediment	Tomales Bay, California (native sediment)						
Test Species	Ampelisca abdita						
Supplier	John Brezina						
Date acquired	12/17/2008						
Acclimation/holding time	2 days						
Age class	Adult						
Test Procedures	OTM/ ITM						
Regulatory Program	OTM/ ITM						
Test location	NewFields Northwest Laboratory						
Test type/duration	10-Day static						
Test dates	12/19/2008-12/29/2008						
Control water	0.45 µm-filtered North Hood Canal sea water						
Test temperature	Recommended: 20 \pm 1 °C	Achieved: 17.8 – 19.6 °C					
Test Salinity	Recommended: $32 \pm 2 \text{ ppt}$	Achieved: 29-36 ppt					
Test dissolved oxygen	Recommended: > 4.6 mg/L	Achieved: 5.3-8.0 mg/L					
Test pH	Recommended: 8.0 ± 0.5	Achieved: 7.7-8.5					
Control performance standard	Recommended: Control ≤ 10% mortality	Achieved: 10%					
Reference performance standard	Recommended: Reference mortality < 25%	Achieved: 8%					
Reference Toxicant LC50	0.54 mg/L Cd						
Acceptable Range	0.13 – 1.09 mg/L						
Test Lighting	Continuous						
Test chamber	1-Liter Glass Chamber						
Replicates/treatment	5 + 2 surrogates for measuring porewater ammonia levels						
Organisms/replicate	20						
Exposure volume	175 mL sediment/ 950 mL water						
Feeding	None						
Water renewal	None						
Deviations from Test Protocol	Salinity and temperature out of range for all except Control						

NewFields 29

3.3.2 10-Day Solid-Phase Polychaete Worm Test

The 10-d polychaete worm test with *Neanthes arenaceodentata* was initiated on December 19, 2008. A summary of test results, water quality observations and an overall summary of the test are presented in Tables 3-12 to 3-14. The test was validated by 92% survival in the controls. The LC_{50} for the cadmium reference-toxicant test was 10.4 mg Cd/L within the control chart limits (2.87- 16.9 mg Cd/L). Temperature fell slightly below and salinity increased above the target range in all treatments. This did not appear to have an effect on the animals as evidenced by the high survival rates in all treatments. Ammonia levels were below NOEC (approximately 5 mg/L) for all treatments.

Mean percent survival in LA-3 Reference was 92.0%. Mean percent survival in the test treatments was 84.0% for both Comp C-L and Comp C-U. There was no significant difference between treatments and the reference.

Table 3-12. Survival Summary for the 10-day Benthic Test with N. arenaceodentata

Treatment	Mean Percentage Survival	SD		
Control	92.0	11		
LA-3 Reference	92	17.9		
Comp C-U	84.0	21.9		
Comp C-L	84.0	16.7		

Table 3-13. Summary of Water Quality, 10-Day Benthic Test with N. arenaceodentata

Treatment	Dissolved Oxygen (mg/L)		Temperature (°C)		pH (units)			Salinity (ppt)				
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.0	6.6	7.9	19.0	18.0	19.6	8.1	7.7	8.2	31.9	31.0	34.0
LA-3 Reference	6.9	6.3	7.3	19.0	18.0	19.5	8.1	7.8	8.2	32.2	31.0	34.0
Comp C-U	6.8	6.4	7.7	19.0	18.3	19.5	8.1	7.8	8.2	31.9	31.0	33.0
Comp C-L	6.9	6.3	7.9	19.0	18.0	19.6	8.1	7.8	8.2	32.3	31.0	35.0

Table 3-14. Test Condition Summary for Neanthes areanaceodentata

	Test Conditions: <i>N. arenaceodentata</i>							
Sample Identification	LA-3 Ref, Comp C-L, C	omp C-U						
Date sampled	12/8/2008							
Date received	12/13/2008							
Sample storage	4°C, dark							
Weeks of holding	1 week							
Control sediment	Yaquina Bay, Ore	gon						
Test Species	N. arenaceodenta	ata						
Supplier	Don Reish							
Date acquired	12/16/2008							
Acclimation/holding time	3 days							
Age class	Juvenile							
Test Procedures	OTM/ ITM							
Regulatory Program	OTM/ ITM							
Test location	NewFields Northwest La	aboratory						
Test type/duration	10-Day static							
Test dates	12/19/2008-12/29/2	2008						
Control water	0.45 µm-filtered North Hood C	Canal sea water						
Test temperature	Recommended: 20 \pm 1 $^{\circ}$ C	Achieved: 17.8 – 19.6 °C						
Test Salinity	Recommended: 30 ± 2 ppt	Achieved: 29-36 ppt						
Test dissolved oxygen	Recommended: > 4.6 mg/L	Achieved: 5.3-8.0 mg/L						
Test pH	Recommended: 8.0 ± 0.5	Achieved: 7.7-8.5						
Control performance standard	Recommended: Control < 10% mortality	Achieved: 10%						
Reference performance standard	Recommended: Reference mortality < 25%	Achieved: 8%						
Reference Toxicant LC50	10.4 mg/L							
Acceptable Range	2.87- 16.9 mg/l	-						
Test Lighting	Continuous							
Test chamber	1-Liter Glass Chan	nber						
Replicates/treatment	5 + 2 surrogates for measuring pore	water ammonia levels						
Organisms/replicate	5							
Exposure volume	175 mL sediment/ 950 r	mL water						
Feeding	None							
Water renewal	None							
Deviations	Salinity and temperature out of range	e for all except Control						

3.3.3 RESULTS OF THE WATER-COLUMN TEST WITH MENIDIA BERYLLINA

The water-column test with *M. beryllina* was initiated on January 7, 2009. A summary of test results, water quality observations and an overall summary of the test are presented in Tables 3-15 to 3-17. The test was validated by 96% survival in the controls. The LC50 for the copper reference-toxicant test was 227 µg Cu/L, and was inside the control chart limits (91.4 - 454 mg Cu/L), indicating that the population of test organisms used in this test were similar in sensitivity to those previously tested at the NewFields laboratory. Bench sheets, including survival in each of the treatment replicates, are presented in Appendix D.

Salinity levels were slightly out of the target range for all treatments, but were within the tolerance range for this species and did not appear to have no effect as evidenced by the high survival rates. Ammonia levels were below NOEC for all treatments.

Mean percentage survival in the 100% SPP for Comp C-U and Comp C-L samples were 88% to 98% relatively. There was no significant difference between test treatments and control survival, and the estimated LC50 for both treatments was >100%.

Table 3-15. Summary of Results for the Water-column Test with M. beryllina

Treatment	SPP (%)	Mean Percentage Survival	SD	LC50
Control	0	96	8.9	NA
Site Water	0	96	8.9	NA
	10	92	17.9	
Comp C-U	50	94	5.5	>100%
	100	88	8.4	
	10	88	11.0	
Comp C-L	50	94	5.5	>100%
	100	98	4.5	

Table 3-16. Summary of Water Quality for the Water-column Test with M. beryllina

Treatment	SPP (%)	Dissolved Oxygen (mg/L)			Temperature (°C)			Salinity (ppt)			pH (units)		
	(70)	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	0	7.3	6.5	7.9	19.2	18.6	19.8	32.8	32.0	34.0	7.6	7.4	8.0
Site Water	0	7.4	6.8	9.0	19.4	19.1	19.8	35.3	34.0	37.0	7.8	7.6	7.9
	10	7.3	6.8	8.0	19.3	18.8	19.9	33.3	32.0	36.0	7.9	7.7	8.0
Comp C-U	50	7.2	6.6	7.7	19.5	19.0	19.9	33.9	33.0	35.0	7.9	7.7	8.0
	100	6.9	6.5	7.4	19.5	19.3	19.9	35.2	34.0	36.0	7.9	7.7	8.2
	10	7.1	6.6	8.2	19.4	18.7	19.9	32.8	32.0	34.0	7.9	7.7	7.9
Comp C-L	50	7.2	6.6	8.0	19.4	18.7	19.9	34.6	33.0	36.0	7.8	7.7	8.0
	100	7.3	6.9	8.0	19.5	19.2	19.9	34.7	34.0	36.0	7.9	7.8	8.0

Table 3-17. Test Condition Summary for Menidia beryllina

	Test Conditions: <i>M. beryllina</i>							
Sample Identification	LA-3 Ref, Comp C-L, Co	omp C-U						
Date sampled	12/8/2008							
Date received	12/13/2008							
Sample storage	4°C, dark							
Weeks of holding	3 weeks							
Test Species	M. beryllina							
Supplier	Aquatic BioSyster	ns						
Date acquired	1/6/2009							
Acclimation/holding time	1 day							
Age class	10 days old							
Test Procedures	OTM/ ITM							
Regulatory Program	OTM/ ITM							
Test location	NewFields Northwest La	boratory						
Test type/duration	96-hour SPP							
Test dates	1/7/2009-1/11/2009							
Control water	0.2µm-filtered North Hood Ca	nal sea water						
Test temperature	Recommended: 20 \pm 1 $^{\circ}$ C	Achieved: 18.6 – 19.9°C						
Test Salinity	Recommended: 31 \pm 2 ppt	Achieved: 32-37 ppt						
Test dissolved oxygen	Recommended: > 3.7 mg/L	Achieved: 6.5- 9.0 mg/L						
Test pH	Recommended: 7.8 ± 0.5	Achieved: 7.4-8.2						
Control performance standard	Recommended: Control ≤ 10% mortality	Achieved: 4%						
Reference Toxicant LC50	307 μg Cu/L							
Acceptable Range	89.6- 443 µg Cu/	L						
Test Lighting	16- hours light, 8-hour	s dark						
Test chamber	600mL Glass Cham	ber						
Replicates/treatment	5							
Organisms/replicate	10							
Exposure volume	250 mL							
Feeding	Once at 48 hours	3						
Water renewal	None							
Deviations	Salinity out of range in all	reatments						

3.3.4 RESULTS OF THE WATER-COLUMN TEST WITH AMERICAMYSIS BAHIA

The water-column test with *A. bahia* was initiated on January 7, 2009. A summary of test results, water quality observations and an overall summary of the test are presented in Tables 3-18 to 3-19. The test was validated by 98% survival in the controls. The LC50 for the copper reference-toxicant test was 233 µg Cu/L, and was inside the control chart limits (140 - 406 mg Cu/L), indicating that the population of test organisms used in this test were similar in sensitivity to those previously tested at the NewFields laboratory. Bench sheets, including survival in each of the treatment replicates, are presented in Appendix D.

Salinity levels were out of range for all treatments, but did not appear to have affected survival as evidenced by the high survival rates. Ammonia levels were below NOEC for all treatments. Mean percentage survival in the 100% SPP for Comp C-U and Comp C-L samples were both 98%, and the estimated LC50 for each of the test treatments was >100%.

Table 3-18. Summary of Results for the Water-column Test with A. bahia

Treatment	SPP (%)	Mean Percentage Survival	SD	LC50
Control	0	98	4.5	NA
Site Water	0	98	4.5	NA
	10	98	4.5	
Comp C-U	50	98	4.5	>100%
	100	98	4.5	•
	10	100	0	
Comp C-L	50	94	5.5	>100%
	100	98	4.5	

Table 3-19. Summary of Water Quality Observations; Water-column Test with A. bahia

Treatment	SPP (%)	Dissolved Oxygen (mg/L)			Temperature (°C)			p⊦	l (unit	s)	Salinity (ppt)		
	,	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	0	6.3	5.1	7.9	19.3	18.8	19.5	33.1	32.0	34.0	7.8	7.5	7.9
Site Water	0	6.7	5.4	9.3	19.4	18.6	19.8	35.3	34.0	36.0	7.8	7.6	7.9
	10	6.3	4.8	7.7	19.5	19.4	19.9	33.1	32.0	34.0	7.8	7.5	7.9
Comp C-U	50	6.4	5.4	7.9	19.6	19.4	19.9	33.7	33.0	34.0	7.8	7.5	8.0
	100	5.8	5.0	6.4	19.6	19.5	19.8	34.8	34.0	35.0	7.9	7.5	8.3
	10	6.0	5.1	8.2	19.5	19.1	19.9	33.1	32.0	34.0	7.8	7.5	7.9
Comp C-L	50	5.9	4.7	8.1	19.5	19.2	19.8	33.3	33.0	34.0	7.8	7.5	7.9
	100	6.0	4.7	8.1	19.6	19.4	19.8	34.8	34.0	36.0	7.8	7.6	7.9

Table 3-20. Test Condition Summary for Americamysis bahia

Table 3-20. Test Condi	tion Summary for <i>Americamysis bahia</i> Test Conditions: <i>A. bahia</i>							
Sample Identification	LA-3 Ref, Comp C-L, Co	mn C-U						
Date sampled	12/8/2008							
Date received	12/13/2008							
Sample storage	4°C, dark							
Weeks of holding	3 weeks							
Test Species	Americamysis bah	<u> </u>						
Supplier	Aquatic BioSystem	S						
Date acquired	1/6/2009							
Acclimation/holding	1 day							
Age class	3 days old							
Test Procedures	OTM/ ITM							
Regulatory Program	OTM/ ITM							
Test location	NewFields Northwest Lab	ooratory						
Test type/duration	96-hour SPP							
Test dates	1/7/2009-1/11/2009							
Control water	0.2µm-filtered North Hood Car	nal sea water						
Test temperature	Recommended: 20 \pm 1 °C	Achieved: 18.6 – 19.9°C						
Test Salinity	Recommended: 31 \pm 2 ppt	Achieved: 32-37 ppt						
Test dissolved oxygen	Recommended: > 3.7 mg/L	Achieved: 6.5- 9.0 mg/L						
Test pH	Recommended: 7.8 ± 0.5	Achieved: 7.4-8.2						
Control performance standard	Recommended: Control ≤ 10% mortality	Achieved: 4%						
Reference Toxicant LC50	233 μg Cu/L							
Acceptable Range	140- 406 μg Cu/L							
Test Lighting	16- hours light, 8-hours	s dark						
Test chamber	600mL Glass Chaml	per						
Replicates/treatment	5							
Organisms/replicate	10							
Exposure volume	250mL							
Feeding	Twice daily							
Water renewal	None							
Deviations from Test Protocol	Salinity out of range in all to	reatments						

3.3.5 RESULTS OF THE WATER-COLUMN TEST WITH MYTILUS SP.

The bivalve larval test was conducted on January 7, 2009 and was validated by 96.8% mean normal development in the controls. The EC50 for the copper reference-toxicant test was 9.69 μ g Cu/L for normal development, which was within control chart limits (3.60 – 18.0 μ g Cu/L). A summary of test results, water quality observations and an overall summary of the test are presented in Tables 3-21 to 3-23. Bench sheets, including survival in each of the treatment replicates, are presented in Appendix D.

Salinity was out of range for Comp C-U 50 and 100% as well as Comp C-L 50 and 100%. There was no adverse effect on the animals as evidenced by high normal development percentages. Ammonia levels were below NOEC for all treatments. Mean percentage normal survival in the Site Water control was 98.1%, while mean percentage normal in 100% SPP for Comp C-U and Comp C-L were 97.2% and 97.6%, respectively. There were no significant differences between mean normal survival in the 100% SPP for either test composite, relative to the control and the estimated EC_{50} for both treatments was >100% SPP.

Table 3.21 Summary of Results for the Water-column Test with Mytilus sp.

		to for the trater column rest t		
Treatment	SPP (%)	Mean Normal Development	SD	EC50 (%SPP)
Control	0	96.8	1.3	NA
Site Water	0	98.1	0.6	NA
	1	96.5	0.6	
Comp C-U	10	97.5	0.7	>100
Comp C C	50	97.0	0.9	7100
	100	97.2	1.4	
	1	97.9	0.5	
Comp C-L	10	97.3	0.9	>100
Comp C-L	50	97.3	0.9	7100
	100	97.6	0.6	

Table 3-22 Summary of Water Quality Observations, Water-column Test with Mytilus sp.

Treatment	SPP (%)	SPP (%) Dissolved Oxygen (mg/L)			Temperature (°C)			pH (units)			Salinity (ppt)		
		Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	0	7.6	7.5	7.9	16.0	15.5	16.8	7.8	7.8	7.9	32.0	31.0	33.0
Site Water	0	7.9	7.3	9.0	16.0	15.6	16.3	7.8	7.8	7.9	35.0	34.0	36.0
	1	7.6	7.2	8.3	16.0	15.6	16.4	7.9	7.9	8.0	32.3	32.0	33.0
Comp C-U	10	7.5	7.1	8.1	16.1	15.7	16.6	7.9	7.9	8.0	32.3	32.0	33.0
Comp C-0	50	7.2	6.8	7.5	15.9	15.6	16.5	8.0	7.9	8.1	34.0	33.0	35.0
	100	6.9	6.6	7.1	15.9	15.6	16.6	8.1	8.0	8.3	35.3	34.0	37.0
	1	7.3	6.9	7.9	16.0	15.6	16.5	8.1	8.0	8.1	32.3	32.0	33.0
Comp C-L	10	7.6	7.3	8.0	15.9	15.5	16.6	8.0	7.9	8.0	32.7	32.0	33.0
Comp C-L	50	7.6	7.3	8.0	15.8	15.4	16.6	8.0	7.9	8.0	34.7	33.0	36.0
	100	7.6	7.3	8.0	16.1	15.5	16.9	7.9	7.8	8.0	35.0	34.0	36.0

Table 3-23. Test Condition Summary for Mytilus sp

Table 3-23. Test Condition Summary for <i>Mytilus sp</i> Test Conditions: <i>Mytilus sp</i> .											
Sample Identification	LA-3 Ref, Comp C-L, Co	omp C-U									
Date sampled	12/8/2008	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Date received	12/13/2008										
Sample storage	4°C, dark										
Weeks of holding	3 weeks										
Test Species	Mytilus sp.										
Supplier	Carlsbad Aquafarr	ne									
Date acquired	1/6/2009	110									
Acclimation/holding	Broodstock held for 1	l dav									
Age class	Larval	day									
Age of test animals	<4 hours										
Test Procedures	OTM/ ITM										
Regulatory Program	OTM/ ITM										
Test location	NewFields Northwest Laboratory										
Test type/duration	48-hour SPP	•									
Test dates	1/7/2009-1/9/2009										
Control water	0.2µm-filtered North Hood Ca	nal sea water									
Test temperature	Recommended: 16 ± 1 °C	Achieved: 15.4 – 16.9°C									
Test Salinity	Recommended: 31 ± 2 ppt	Achieved: 31-36 ppt									
Test dissolved oxygen	Recommended: > 4.0 mg/L	Achieved: 6.6-8.1 mg/L									
Test pH	Recommended: 8.0 ± 1	Achieved: 7.8-8.3									
Control performance standard	Recommended: Control ≤ 10% mortality	Achieved: 3.2%									
Reference Toxicant LC50	9.69 µg Cu/L										
Acceptable Range	3.60- 18.0 µg Cu/	L .									
Test Lighting	16- hours light, 8-hour	s dark									
Test chamber	1-L Glass Chamb	er									
Replicates/treatment	5										
Organisms/replicate	Stocking density = 288.6 embryos per chamber										
Exposure volume	10mL										
Feeding	None										
Water renewal	None										
Deviations	Salinity out of range in all t	reatments									

3.3.6 BIOACCUMULATION TEST RESULTS

Bioaccumulation tests were initiated on December 16, 2008 using the polychaete worm, *Nephtys caecoides*, and the bent nose clam, *Macoma nasuta*. A summary of test results, water quality observations and an overall summary of the test are presented in Tables 3-24 to 3-26. Bench sheets, including survival in each of the treatment replicates, are presented in Appendix E. The bioaccumulation tests were validated by 95.0% survival in the *N. caecoides* control and 93.6% survival in the *M. nasuta* control. Both species were tested in the same test chambers, therefore only one set of water quality observations are recorded. All water quality parameters were within range.

Mean percentage survival in LA-3 Ref was 96.8% for *M. nasuta* and 86.3% for *N. caecoides*. Mean percentage *N. caecoides* survival were 86.3 and 90.3% for Comp C-L and Comp C-U relatively. Mean percentage *M. nasuta* survival were 64.8 and 99.2% for Comp C-L and Comp C-U. The higher mortality rate for clams in Comp C-L may have been due to the higher percent sand and very low TOC content of 0.05%. However, sufficient tissue was available for all tissue analyses.

Table 3-24. Summary of M. nasuta and N. caecoides Survival 28-d Bioaccumulation Test

	Macoma nasuta		Nephtys caecoides				
Treatment	Mean Percentage Survival	SD	Mean Percentage Survival	SD			
Control	93.6	3.6	95.0	4.2			
LA-3 Ref	96.8	3.3	86.3	4.9			
Comp C-L	64.8	13.7	86.3	3.8			
Comp C-U	99.2	1.8	90.3	4.8			

Table 3-25. Summary of Water Quality for the 28- day Bioaccumulation Test

Treatment	Dissolved Oxygen (mg/L)			Temperature (°C)			Salinity (ppt)			pH (pH units)			Flow (mL/30 sec)		
Treatment	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.1	5.8	8.0	15.6	15.1	16.1	31.7	31	33	7.6	7.3	8.1	40	38	42
LA-3 Ref	7.1	6.1	8.0	15.6	15.0	16.2	31.7	31	33	7.7	7.3	8.0	40	38	42
Comp C-L	7.1	5.8	7.9	15.5	14.9	15.8	31.7	31	33	7.7	7.3	8.0	40	38	42
Comp C-U	7.1	5.5	7.8	15.5	15.0	15.9	31.7	31	33	7.7	7.4	8.3	40	38	42

Table 3-26. Test Condition Summary for Macoma nasuta and Nephtys caecoides

	Test Conditions	prinje edecerace			
Sample Identification	LA-3 Ref, Comp C-L, Co	mp C-U			
Date sampled	12/8/2008				
Date received	12/13/2008				
Sample storage	4°C, dark				
Weeks of holding	1 week				
Test Species	Macoma nasuta and Nephtys	s caecoides			
Supplier	J & G Gunstone provided clams and John	Brezina provided worms			
Date acquired	1/6/2009				
Acclimation/holding time	4 days				
Age class	Adult				
Test Procedures	OTM/ ITM				
Regulatory Program	OTM/ ITM				
Test location	NewFields Northwest Lab	ooratory			
Test type/duration	28-Day Bioaccumula	tion			
Test dates	12/16/2008-1/13/2009				
Control water	0.2µm-filtered North Hood Canal sea water				
Test temperature	Recommended: 15 \pm 1 °C	Achieved: 14.9 – 16.2°C			
Test Salinity	Recommended: $32 \pm 2 ppt$	Achieved: 31-33 ppt			
Test dissolved oxygen	Recommended: > 4.5 mg/L	Achieved: 5.5-8.0 mg/L			
Test pH	Recommended: 7.8 ± 0.5	Achieved: 7.3-8.3			
Control performance standard	Recommended: Control ≤ 10% mortality	Achieved: <i>M. nasuta</i> – 6.4%			
To at Liabting	4C hours light 0 hours	N. caecoides – 5.0%			
Test Lighting	16- hours light, 8-hours				
Test chamber	10 Gallon Glass Aqua	num			
Replicates/treatment	5 25 dama 60 warm	•			
Organisms/replicate	25 clams, 60 worm				
Exposure volume	5 cm of sediment, 30 L se	zawalei			
Feeding Water renewal					
	Flow-Through				
Deviations	None				

3.4 TISSUE CHEMICAL ANALYSIS

Bioaccumulation tests were conducted using Comp C-U and Comp C-L, as well as sediment collected from the LA-3 Reference site. The analyte list for tissue residue analysis was based on the chemical concentrations found in the sediments. Based on the sediment chemistry, tissues from the bioaccumulation exposures were analyzed for mercury and lipids. Concentrations found for each replicate in the test treatments and the reference sample are presented in Table 3-26. No mercury was observed in reference sample. Mercury was detectable in *N. caecoides* from Comp C-U and in *M. nasuta* from Comp C-L; however, concentrations found were only slightly above reporting values. There was a significant difference between the concentration of mercury in the clam tissues exposred to Comp C-U, relative to the LA-3 Reference. However, this was likely to the absence of mercury in the LA-3 Reference clam tissues.

Table 3-26. Summary of Mercury Concentrations in Tissues

		Масс	oma nasuta	Nephty	s caecoides
Treatment	Replicate	Mercury (mg/kg)	Mean Mercury Concentration (mg/kg)	Mercury (mg/kg)	Mean Mercury Concentration (mg/kg)
	1	0.01 U		0.01 U	
LA-3	2	0.009 U		0.01 U	
Reference	3	0.009 U	0.010	0.01 U	0.010
Reference	4	0.01 U		0.01 U	
	5	0.01 U		0.009 U	
Comp C-U	1 2 3 4 5	0.011 0.013 0.011 0.011 0.01	0.011	0.009 0.01 U 0.011 0.01 U 0.009 U	0.010
Comp C-L	1 2 3 4 5	0.009 U 0.009 U 0.01 U 0.009 U 0.01 U	0.009	0.01 U 0.009 U 0.009 U 0.009 U 0.01 U	0.0

4 Discussion

As part of the planning process for Marina Park, NewFields LLC conducted an evaluation of the proposed dredged material from area of the proposed marina. The objective of this sampling and analysis program was to characterize the dredged materials from three dredged material management areas (Areas A, B, and C) within the Marina Park marina project area. The primary disposal options under consideration for the dredged materials are 1) beach nourishment under Regional General Permit Number 67 or an individual permit for unconfined aquatic disposal alternative as governed by the U.S. Army Corps of Engineers (USACE)/U.S. Environmental Protection Agency (USEPA) guidelines set forth in the Inland Testing Manual (ITM; USACE/USEPA 1998), and 2) ocean disposal at disposal site LA-3 based on guidance provided by the Ocean Testing Manual (OTM; USACE/USEPA 1991).

Evaluation criteria were based on the ITM/RGP-67 guidance for nearshore disposal and OTM guidance for open ocean disposal at the LA-3 disposal site. Under the RGP-67 and ITM, sediment is suitable for beach nourishment projects or nearshore placement if the sediment is >80% sand and gravel, is free from chemical contamination, is not plastic (a measure of cohesiveness), and is not likely cause adverse aesthetic effects. In order to determine whether test sediments were free of chemical contamination, chemical concentrations in test sediments were compared to National Oceanographic and Atmospheric Administration (NOAA) effects-based guidance values called Effects-Range Low (ERL) and Effects-Range Median (ERM). The ERL represents the 10th percentile in NOAA effects data base and the ERM represents the 50th percentile. While not criteria, these guidance values provide an indication of whether chemical concentrations are sufficient to predict benthic community effects. If the ERL/ERM values are exceeded, further biological testing might be required as directed by the ITM.

Under the OTM, sediment is suitable for placement in an open-ocean disposal site if it does not exceed the limiting permissible concentration (LPC) for the disposal site. The LPC is based on the sediment chemistry results, toxicity tests, and bioaccumulation test and comparisons to the disposal site reference site (in this case LA-3 Reference). As above, chemical concentrations were screened using the NOAA ERL and ERM values. For benthic toxicity tests, the LPC was defined as: no significant toxicity, relative to the LA-3 Reference and survival within 10% of the reference for the polychaete test and 20% for the amphipod test. For the SPP tests, the LPC was based on a comparison of survival or normal development (larval test only) in the 100% SPP of the test treatments with that of the control seawater. If there is a significant difference, then the median lethal concentration (LC₅₀) for the test treatments is compared with a modeled concentration of SPP at the boundary of the disposal site. Concentrations of targeted chemical analytes in the tissues exposed to test sediments are first compared to the tissues exposed to the LA-3 Reference sediment and second compared to guidance values from the Food and Drug Administration (FDA) and USEPA (2000). Sediment treatments that do not exceed the LPC for the LA-3 disposal site would meet the requirements for disposal at LA-3.

The following discussion evaluates the physical, chemical, and biological data for each composite relative to the two disposal options. In each case the USACE and EPA will make a final determination.

Area A Composites (Comp A-U and Comp A-L):

Area A included that portion of the site currently occupied by the mobile home park. Sediments in the upper composite represented that material from 5 feet below the ground surface (approximately +5 ft. MLLW) to a depth of approximately -4 to 5 ft. MLLW. Soils above +5 ft. MLLW will be used as construction-fill on-site. Sediments in the lower composite represented that material from -4 to -5 MLLW to -14 Ft. MLLW and appeared to represent the ancient Bay sands that underlay much of Lower Newport Bay.

Sediment in the Comp A-U was characterized by 96% sand and gravel, with 0.15% TOC. Sands were not plastic, had very low levels of sulfides and ammonia, and no detectable oil and grease. Metals were either undetected (cadmium, lead, mercury, selenium, and silver) or detected at concentrations well below ERL values (arsenic, chromium, copper, nickel and zinc). All metals concentrations were well below those of the LA-3 Reference sediment. PAHs, pesticides, PCBs, phthalates, and tributyltin were not detected in the Comp A-U sediment.

Sediment in the Comp A-L was characterized by 99% sand and gravel, with 0.08% TOC. Sands were not plastic, had very low levels of ammonia, and no detectable oil and grease or sulfides. Metals were either undetected (cadmium, lead, nickel mercury, selenium, and silver) or detected at concentrations well below ERL values (arsenic, chromium, copper, and zinc). All metals concentrations were well below those of the LA-3 Reference sediment. PAHs, pesticides, PCBs, phthalates, and tributyltin were not detected in the Comp A-L sediment.

The upper and lower sediments of Area A from +5 ft. MLLW to -14 ft. MLLW would meet the criteria for the RGP-67 and ocean disposal at LA-3, as defined above.

Area B Composites (Comp B-U and Comp B-L):

Area B included the beach in front of the mobile home park to the 0 ft. MLLW tide line. The upper composite represented sediment from the beach face to a depth of -4 to -7 ft. MLLW and included hydraulic-fill sands (Terra Costa 2008). Sediments in the lower composite represented that material from -4 to -5 MLLW to -14 Ft. MLLW and were similar to the ancient Bay sands found in lower portion of Area A.

Sediment in the Comp B-U was characterized by 96% sand and gravel, with 0.02% TOC. Sands were not plastic, had very low levels of ammonia, and no detectable oil and grease or sulfides. Metals were either undetected (selenium, and silver) or detected at concentrations well below ERL values (arsenic, cadmium, chromium, copper, lead mercury, nickel and zinc). All metals concentrations were well below those of the LA-3 Reference sediment. Some PAHs were detected in Comp B-U sediment, however, total PAHs were three orders of magnitude below the ERL. Pesticides, PCBs, phthalates, and tributyltin were not detected in the Comp B-U sediment.

Sediment in the Comp B-L was characterized by 98% sand and gravel, with 0.08% TOC. Sands were not plastic, had very low levels of ammonia, and no detectable oil and grease or sulfides. Metals were either undetected (cadmium, lead, mercury, selenium, and silver) or detected at concentrations well below ERL values (arsenic, chromium, copper, nickel, and zinc). All metals concentrations were well below those of the LA-3 Reference sediment. PAHs, pesticides, PCBs, phthalates, and tributyltin were not detected in the Comp B-L sediment.

The upper and lower portions of Area B would meet the criteria for the RGP-67 and ocean disposal at LA-3, as defined above.

Area C Composites (Comp C-U and Comp C-L):

Area C included that portion of the site below the 0 ft. MLLW tide line. Area C included a nearshore component (0 ft. to approximately -5 ft. MLLW) where the bulk of the proposed dredge volume is located and a channel component (-6 ft. to approximately -10 ft. MLLW). The upper Area C composite represented that portion of the cores from the sediment surface to -10 ft. to -12 ft. MLLW. Sediment in the upper segment in the nearshore area was comprised of a sand layer, overlaying a two to three foot layer of silt and was bounded at the bottom by the ancient Bay sands. The upper segment of the channel cores was comprised of silts and clays.

The lower segment was similar throughout the Area and was comprised of the ancient Bay sands that were observed in Areas A and B. The lower segment represented that portion of the cores from -10 to -12 ft. MLLW to project depth.

Sediment in the Comp C-U was characterized by 78% sand and gravel, with 0.68% TOC. Sediment was slightly plastic, with an Atterberg Limit of 16 cm, low levels of ammonia, and no detectable oil and grease or sulfides. With the exception of mercury, metals were either undetected (selenium and silver) or detected at concentrations below ERL values (arsenic, cadmium, chromium, copper, lead, nickel and zinc) and below those of the LA-3 Reference sediment. Some PAHs were detected in Comp C-U sediment; however, total detected PAHs were 108 μ g/kg, less than 3% of the ERL (4,022 μ g/kg). Pesticides, PCBs, phthalates, and tributyltin were not detected in the Comp C-U sediment.

Sediment from the lower Area C composite was very similar to the lower composites from Areas A and B, with 99% sand and 0.05% TOC. Metals were either undetected or detected very near the detection limits. Pesticides, PCBs, tributyltin, TRPH, oil and grease, phthalates, and PAHs were not detected in the Comp C-L.

No toxicity was observed in either of the benthic tests. Survival in the amphipod test ranged from 87-92%. Control survival met the standard, proving a valid test, and there was no significant difference between test treatments and the reference. Survival in the polychaete test for both test treatments was 84%. Similarly, control survival met the standard and there was no significant difference between test treatments and the reference site.

There was also no indication of toxicity in the water-column tests. For the fish and mysid tests, survival was >88% in the 100% SPP and there were not significant differences between the 0% and 100% SPP. Mean normal development of larval mussels was slightly greater in the test treatments than in the dilution water and there were no significant differences between the 0% and 100% SPP treatments. As outlined in the ITM, dredged material does not exceed the water-column LPC if survival in 100% elutriate is not >10% less than that of dilution water (USEPA 1998). None of the treatments exceeded these guidelines.

Area C composites and the LA-3 Reference site were evaluated for bioaccumulation potential. The chemistry analyte list for tissues exposed to the Area C composites included mercury and lipids. No mercury was detected in either the reference material or in Comp C-L. Mercury was either undetected or detected at the detection limit (0.01 to 0.013 mg/kg) in tissues exposed to Comp C-U. The mean tissue concentrations in clams and worms exposed to Comp C-U were within 20% of the detection limit, the standard margin of error for this analytical method. The tissues concentrations of mercury were also well below the FDA limit of 1.0 mg/kg and the risk-based guidance value of 0.3 mg/kg (USEPA 2000).

Sediment from the Area C upper composite would not meet the requirement for beach nourishment, with <80% sand and gravel. However, this material would meet the requirements for open-ocean disposal. With the exception of mercury, concentrations for chemicals of potential concern were either

not detected or detected at concentrations below those of the LA-3 Reference site. Mercury was detected above the ERL, but below the ERM. No significant toxicity was observed in any of the biological tests and no significant bioaccumulation of mercury was observed in the bioaccumulation tests.

Sediment from the lower Area C composite met the requirements for beach nourishment and ocean disposal. However, this layer occurs close to the proposed dredge depth of -12 ft. MLLW and it is unlikely that the layer could be easily separated from the overlying sediment during dredging.

REFERENCES

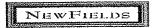
- APHA/AWWA (American Public Health Association/American Water Works Association). 1998. Standard Methods for the Examination of Water and Wastewater (20th Edition). Edited by Lenore S. Clesceri, Arnold E. Greenberg and Andrew D. Eaton. APHA Phildelphia PA.
- American Society for Testing and Materials. 2003a. E724-98 Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs. In Annual Book of Standards, Vol. 11-05. West Conshohocken, Penn.
- ——. 2003c. E1367-99 Standard Guide for Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. In Annual Book of Standards, Vol. 11-05. West Conshohocken, Penn
- ——. 2003d. E1611-00 Standard Guide for Conducting Sediment Toxicity Tests with Marine and Estuarine Polychaetous Annelids. In Annual Book of Standards, Vol. 11-05. West Conshohocken, Penn.
- Krone, C.A., D.W. Brown, D.G. Burrows, R.G. Bogar, S.L. Chan, and U. Varanasi. 1989. A method for analysis of butyltin species in measurement of butyltins in sediment and English sole livers from Puget Sound. Marine Environmental Research 27:1-18.
- Lee, D. R. 1980. Reference toxicants in quality control of aquatic bioassays. In Aquatic Invertebrate Bioassays, ASTM STP 715. American Society for Testing and Materials. Philadelphia, PA.
- Long, E. R., D. D. MacDonald, S. L. Smith, and F. D. Calder. 1995. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environmental Management, Vol 19, No. 1, pp 81-97.
- NewFields. 2007. Mercury study of West Lido Channel and Balboa Peninsula. Prepared for City of Newport Beach.
- Plumb, R. H., Jr. 1981. Procedure for handling and chemical analysis of sediment and water samples. Technical Report EPA/CE-81-1. U.S. Environmental Protection Agency/U.S. Army Corps of Engineers Technical Committee on criteria for dredged and fill material, U.S. Army Waterways Experimental Station. Vicksburg, MS.
- TerraCosta Consulting Group, Inc. 2008. Geotechnical Investigation, Marina Park Project, Newport Beach, California. Prepared for City of Newport Beach, August.
- USEPA 1993. Guidance Manual Bedded Sediment Bioaccumulation Tests. EPA/600/R-93/183. USEPA Office of Research and Development.
- USEPA. 1994. Method 7471A: Mercury in Solid or Semisolid Waste. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.
- ———. 2001. SW-846 On-line, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. URL: http://www.epa.gov/epaoswer/hazwaste/test/sw846.htm. Office of Solid Waste.
- USEPA/USACE 1991. Evaluation of Dredged Material Proposed for Ocean Disposal: Testing Manual. EPA 503/8-91/001. USEPA Office of Water. February.

——. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S: - Testing Manual. EPA 823-B-98-004. USEPA Office of Water. February.

Appendix A Field Logs and Core Photographs

NewFields

	JRVEY	. Maidaa	Parr	DATE	10108	PROJECT MANAGER	aor	RECORDER
ATION ID	ULDI T	- Marino	NAV DATUM	1114	LATITUDE	10.000	LONGITUE	DE () XV(U.V)
			NAD83		33°36.4	アンナナ	(17	T Schuly 0°56.325' N H(FT)
MP TER DEP	TH (FT)		TIDE (FT)		MLLW (FT) = WATER D	EPTH - TIDE	SAP DEPT	H (FT)
	RE LENGTH	(FT) (SAP DEPTH - MLI	FINAL CORE LENGT		PENETRATION (FT)		CORE LEN	IGTH COLLECTED FOR ANALYS
	ETER (IN)		ATTEMPT		251		TIME FINIS	
	1 1/2		of	1	1045	5		1200
PEN. P.(FT)	RETRV. DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR VALUE/CHROMA)	SAMPLE ID BY	EPTH	MISC
1	1	coarsen	N 0 4 0	Lew	pali brown	1		
		coarse	none	1	1 2 3 1			
2	2	Sitell			والمراجعة			
		n		+				
3	3	sand	none	dar	karan			}
4	4	T			.1 ~	100 A 1	ı il	
	<u> </u>	m 18\$11	K	<u> </u>	-4.5 miss	ary MP-1	VI	_
5	5	+						
6	6							
7	7							
ſ								
8	8							
					3'-9' m			
9	9				S - 9 17	155/3		
10	10	1			M	 		
						1		
11	11							
12	12				}	:		
12	12	· ·	B.Z.					
13	13	Very	D D		V			
		1100 Lac	1 V		<i>f</i> .			
14	14	L dang		vel	ry Pall			
15	15	doll			00			
	<u> </u>	Short			1 31 3000		<u> </u>	
16	16				1	01.P-1	1	
						<i>\$17</i> 7)		
17	17				-			
18	18	cythenely			;			
		(songe						
19	19	Sand, gr						
		SHEW				\ \		7. In ev
20	20	1-44			13	7		Z-lazer


15 B/50

ROJECT/SU	URVEY	00 - 3	. O. az	DATE	a . 1 St	PROJECT M			RECORDER	
V CU	port	- Marin	a Park		26/08	15.60	<u>voli</u>	LOX TLONGITUI	T. Schun	
TY T	P-2		NAD83		33° 36 .	479'	2	11=	7° 55.338°	W
TER DEP	TH (FT)		TIDE (FT)		MLLW (FT) = WATER I	DEPTH - TIDE		SAP DEPT	H (FT)	
		(FT) (SAP DEPTH - MLL	FINAL CORE LENGTH	(FT)	PENETRATION (FT)				IGTH COLLECTED FOR ANAL	LYSIS
	ETER (IN)		ATTEMPT		25 TIME STARTED			Z.O TIME FINISHED		
1 1/2			of		1250				15	
PEN. EP.(FT)	DEP.(FT)	SEDIMENT TYPE	 		COLOR VALUE/CHROMA) SAMPLE ID BY			EPTH	MISC	
1	1		Gample	Wh S	Sung C	-2'	(W-	worls	(sed.)	
2	2	\								
3	3	sard	rone	1/2	ow to					
4	4	***	-	95	M					
5	5		amole in	4-	16 f. m&	ervil				
6	6	1.00	7	9	6 fint					
7	7	Sard		V	-	mPa	U			
8	8		,			ļ				
9	9 -	Caarse			<u> </u>		<i>V</i>			
10	10	Sand								·
11	11			5077	chelican)					
12	12		Az,		cht locain					
13	13				5 YR PINK		npa.			,
14	14		(7-4					
15	15									
16	16	V								····
17	17						LO, MARINE E AMARA, AND LOS			
18	18					1				
19	19	Ì					<u> </u>			
20	20		red to	\	\\	20	29 C	V		
ή. OTES	tan	<u>Laigu</u>	red to	5.F	Y. Corc	_ 00]	lec:	te J	-9KOVU	
5	-25	11	***************************************	***************			***********		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	*******

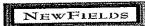
MP VATER DEP			PANC NAV DATUM NAD83 TIDE (FT)		MLLW(FT) = WATER DE	IM' N	SAP DEP	T. Schuh 55.312' V
ARGET CO	RE LENGTH	(FT) (SAP DEPTH - MLI	FINAL CORE LENGTH	(FT)	PENETRATION (FT) 25 TIME STARTED			NGTH COLLECTED FOR ANAL
PEN. DEP.(FT)	RETRV. DEP.(FT)	SEDIMENT TYPE	ODOR	· /HUE	COLOR _VALUE/CHROMA)	SAMPLE ID	BY DEPTH	MISC
1	1	coorse			Pall	ſ		
2	2	Silta			المحدود و وسحه الله الا الاورينية الا لا يورسان ويشيب الله الله الله الله			
3	3 -	Surd Surd Surd						
4	4	Sard				m.P-3	SU.	
5	5							
6	6							
7	7	Sand						
8	8	Aven.		4	?-10 unisside	1		****
9	9					\	<u>/</u>	
10	10	, , , , , , , , , , , , , , , , , , ,		K.O.	y pull_	و المراجع المر		
11	11	very			y pale_	1	V	
12	12	loarse.				70 C V20		
13	13	Sant				MPB	<u> </u>	
14	14	SHEM						
15	15	1000						
16	16							
17	17							
18	18							
19	19				4	<u> </u>		
20	20	18th Coars	e NOISH	ven	pile brown	2- (d)	ler-	0004
<u> </u>	Man	1 augu - 25 fy	recy to	5	τ . Cox \tilde{c}	Lalle	CTCCL	

NIELA		AA 2 -	O_{2}	DATE	1.00	PROJECT MANAGE		RECORDER
ATION ID		- Marin	NAV DATUM	1112	608 LATITUDE	To bard	LONGITU	T.Schuh 1°55.326 6
L	1P-5		NAD83		33° 34			
ATER DEP	TH (FT)		TIDE (FT)		MLLW (FT) = WATER	DEPTH - TIDE	SAP DEP	FH (FT)
		(FT) (SAP DEPTH - MLL	FINAL CORE LENGTH	FT)	PENETRATION (FT)		CORE LE	NGTH COLLECTED FOR ANALYSIS
े DRE DIAME	ETER (IN)				a5′		TIME FIN	20 ²
	1 1/2		of	1	***************************************	30		1530
PEN. DEP.(FT)	DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR _VALUE/CHROMA)	SAMPLE ID	BY DEPTH	MISC
1	1	6-11	hissing			1		
2	2	COATSE	Ċ	INO/I	a light			
3	3	Coarse			y light			
4	4					· ·		
5	5	Silt		9	(2)	the Annual Control		
6	6	1 2004				14.00	ı (
7	7				<u> </u>	MPS	<u> </u>	
-	8	Sand						
8				ļ			· ·	
9	9							
10	10							
11	11	14.		_		To die Grand		
12	12	<u> </u>		×		V	<u> </u>	
13	13	1				1		
14	14	wy		DI	ARK	A Common of the		
15	15	(sarsy)		a	ARK Ag	mps		
16	16	Sara			1			
17	17	SH.						
18	18					1		
19	19					7		
20	20							
IOTES	tha:	M nun	ured 1	k) =	5ft. 00	re coll	e (201	t from

5 5 6 6 7 109K 5-6 missing 7 7 Wetsand 100 A. Hyperton 8 8 1000 Se Pale brown 9 9 10 10 10 11 11 12 12 13 13 13 PART GREY (munsel) 14 14 14 11 PART GREY (munsel) (munsel) (munsel) (munsel) (munsel) (munsel)	
WATER DEPTHENT ARREST CORE LENGTH (PT) (SAP DEPTH-MLI RINAL CORE LENGTH (PT) DORE DIAMETER (ND) 1 1/2 1 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CORE DIAMETER (IN) 11/2 PON: PON: 11/2 PON: 11/2 PON: PON: 11/2 PON: PON:	~
11/2 PR. NEITHY SEDIMENT TYPE ODOR (HUE VALUE HORMAN) SAMPLE ID BY DEPTH MISC 1 1 1 Band None Light tan 2 2 CLOUSE VERY Pall 3 3 3 brown 4 4 (munsc) 7 7 Wetsard None Light tan 8 8 1000 St Pale brown 9 9 10 10 11 11 12 12 13 13 January None (munsc) 14 14 (in yanger) 15 15 Wetsard (munsc) 17 YR 18 19	IS (FT
DEP(FT) DEP(FT) SEDIMENT TYPE ODOR (HUE VALUECHROMA) SAMPLE ID BY DEPTH MISC 1 1 Mand here light ten 2 2 Caarse remy fael 3 3 Frew 1 4 4 Mand here light ten (MUNSC) 8 8 7 7 7 Welsand Hore by Depth Missing 7 7 Welsand Hore by Depth Type 8 8 6 6 Part of Missing 9 9 9 10 10 10 11 11 12 12 Mand Hore by Depth Missing 14 14 Will have a grey lize 13 Missing 15 15 Jan 13 Missing MP (MISSING MISSING MAND HORE BY DEPTH MISSING MIS	
6 6 1 5-6 missing 7 7 wetsand none transform 8 8 (000 se Pale brown 9 9 10 10 11 11 12 12 13 13 part of missing (munscl) mpc 15 15 50 7.5 yr.	
6 6	
6 6	
6 6	
6 6	a-u
7 7 Wetsand 1000c. Hypotton 8 8 (000 Se Pale brown 9 9 10 10 11 11 12 12 13 13 January 1000 (munsch) 14 14 Jin Mark 15 15 January 1000 (No. 1) 16 16 16	
9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16	
9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16	
10 10 11 11 12 12 13 13	
10 10 11 11 12 12 13 13 14 14 15 15 16 16	
12 12 dank 13 13 party grey 12-13' missay 14 14 pin yar (munsch) mpc 15 15 fat 7.5 yr	
13 13 9 9 9 9 12-13 missing mpc 14 14 (iv) (munscl) mpc 15 15 50 7.5 yr	
13 13 9 10 9 12-13 missing mpc 14 14 (iv) 10 (munscl) mpc 15 15 50 7.5 yr.	
14 14 (in minsc) mpc 15 15 Spt 7.5 yr	
15 15 Syr 7.5 yr	Le Con
16 16 7	
17 17 prom	
17 17 pray 18 18 VPM pone munsel 5-1 19 19 Coasse sand	
19 19 COAFSE LOYR	
20 20 Sand	
NOTES MP-62 Was Originally called MP-60 on SA	······

PROJECT/S	URVEY		. ^	DATE	;	PROJECT MANAGER		RECORDER
Nec	NDOR	+ · Mar	ina Park	. !!	26/08	3.6ardin	25	T.Schuh
STATIONID	P-6				LATITUDE	11001	LONGITUD	7.5xhuh
44	YY	O	NAD83		25 36	.445 N	11.	1 45.313W
WATER DEF	TH (FT)		TIDE (FT)		MLLW (FT) = WATER D	EPTH - TIDE	SAP DEPT	M(FT)
TARGET CO	RE LENGTH	(FT) (SAP DEPTH - MLL	FINAL CORE LENGTH	(FT)	PENETRATION (FT)		CORE LEN	GTH COLLECTED FOR ANALYSIS (FT
	(O ′		201		201			201
CORE DIAM	ETER (IN)		ATTEMPT		TIME STARTED		TIME FINIS	SHED
	1 1/2		∖of	ł	1800)	1	8 <i>30</i>
PEN. DEP.(FT)	DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR E_VALUE/CHROMA)	SAMPLE ID BY		MISC
1	1	(600 SC	none	<u> </u>	14			
2	2	Sand	^	\ v. ~	pale			
3	3)s	rown	6b.	·U	
4	4	Small		(mo	pale rown ensel)	3		
5	5	amounts of shell hash			€	1 4.5	5-6'	missing
6	6	shellhash			The state of the s	J.		J
7	7	About 17 de 17 de 18						
8	8							
9	9	V_	V	\	b		on measilion engal believ	
10	10							
11	11	sund	none	d	ark ()	6b-1		
12	12	Sand compile				, the state of the	2-13	missing
13	13	shellnast		(m	msel)			
14	14				The state of the s			
15	15		1		<u> </u>			
16	16		A THE STATE OF THE		1			
17	17	coarse sand		a	ch			
18	18			¢-	1 LOYR			
19	19	steus						
20	20	\				·		
NOTES	5ta:	Fion a	Ided è	10	ordi ya	Hed Is	20 <u>0</u>	ted +0

correspond to map location See attached map core collected from surface to 20 ft.


(Carrie	-		7000	201/25/20		3000
	N	EW	1.3	LE.	LD	s I
	20010		-			

OJECT/S いし	W (D)	r- Mari	na Parju	DATE 11/26	108	PROJECT MANAGER B. Gardí	rled"	recorder T. Schuh E "55.312" W
1/	1P-7		NAV DATUM NAD83	LAT.	33° 36.6	N 7565	LONGITUE	°55.312 W
FER DE	TH (FT)		TIDE (FT)	MLL	W (FT) = WATER D	EPTH - TIDE	SAP DEPT	H (FT)
	RE LENGTH	(FT) (SAP DEPTH - MLL	FINAL CORE LENGTH	(FT) PEN	ETRATION (FT)		CORE LEN	GTH COLLECTED FOR ANALYSIS (
	ETER (IN)		ATTEMPT TIME STARTS		STARTED 1640		TIME FINIS	ыне D 230
PEN. EP.(FT)	RETRV. DEP.(FT)	SEDIMENT TYPE	ODOR		OLOR .UE/CHROMA)	SAMPLE ID BY		MISC
1	1	TRAFEL	none	very	pall	1		
2	2	Sard	none	bron	ŮN	mp 7-	U_	
3	3	shell hash		8-3-	→7-3			2-2.5 MISSIN
4	4			10	1R-			
5	5	<u> </u>					······································	
6	6	finer						
7	7	Sar						
8	8							8.5-10 MISSIN
9	9							
10	10							
11	11					+		1212.5 miss by
12	12			. 00			w.w	1010011110010
13	13	M		Wha		m.P.7.		
14	14	100 d		9184		11111		
15 16	15 16	The local		mun	sell			
17	17	DU NO		da	brown	1		
18	18	Sugar		7.541	4 4-2	\ \tag{\frac{\psi}{2}}		
19 19	19			\	<i>V</i>	2-600	e.sr	
20	20							

SEDIMENT CORING LOG

to match map

ATER DEP	P-8	- Marin	NAD83 TIDE (FT)		ATHTUDE 33° 36.9	SIO N	LONGITUD (17	LONGITUDE 117°55.336 W SAP DEPTH (FT)		
	QO / ETER (IN)	(FT) (SAP DEPTH - MLL	Q√O ′ ATTEMPT		PENETRATION (FT) 2-0 TIME STARTED		TIME FINIS	CORE LENGTH COLLECTED FOR ANALYSIS (
PEN. EP.(FT)	1 1/2 RETRY. DEP.(FT)	DEDIMENT TVDS	opon	(MI)	COLOR E_VALUE/CHROMA)	SAMPLE ID BY		1715 Misc	_	
1	. (00.058)				nsell	missing up		mist		
2	2	with Sit		10	YR 5-3					
3	3	and		f	Stown					
4	4					mp8 up	per			
5	5									
6	6									
7	7	1			<u> </u>					
8	8	Band			1 some grey				_	
9	9	<u> </u>		da	Isonegrey N. Gray				4	
10	10				<u> </u>				_	
11	11					mp81	BULK		_	
12	12					12-14	miss.	15		
13	13	Very							_	
14	14	Cons							_	
15	15	w/ stt			- gran					
16	16								-	
17	17	+				2-la			· -2	
18	18					2- a	10			
19	19								-	
20 OTES	20		1 4	?	g. Coi		. 1	<u> </u>		

Shahanaa						550 ISOT 144140ED		processo
PROJECT/SU	lani	rapark	NAV DATUM	DATE 【之	(8/08	PROJECT MANAGER	LOVOITURE	RECORDER SS-36/
STATION ID	NP	J 1	NAD83		LATITUDE 33 36515 MLLW(FT) = WATER DEPTH-TIDE		117	55.361
WATER DEP	~ _	(15"	TIDE (FT) 4,0		PENETRATION (FT)	PTH - TIDE		/
TARGET CO	RE LENGTH	(FTY (SAP DEPTH - MLL	FINAL CORE LENGTH (F	T)	PENETRATION (FT)		CORE LENG	TH COLLECTED FOR ANALYSIS (FT
CORE DIAME	TER (IN) 1 1/2		ATTEMPT Of		TIME STARTED 9:	07	TIME FINISH	I ED
PEN. DEP.(FT)	RETRV. DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR _VALUE/CHROMA)	SAMPLE ID BY D	EPTH	MISC
1	1						<u> </u>	
2	2	bush	none	Q ^{(s}		m9-4	\	
3	3	6						
4	4							
5	5							
.6	6							
7	7							
8	8							
9	9		_					
10	10							
11	11						<u></u>	
12	12							
13	13		-					
14	14							
15	15							
16	16							
17	17							
18	18							
19	19							
20	20							
NOTES	.,			**************	************************************			
					•			

NEWFIELDS

PROJECT/SU	JRVEY //	nazina p	ank	DATE	2-8-08	PROJECT MANAGER		RECORDER
STATION ID	1 ,	· · · · · · · · · · · · · · · · · · ·	NAV DATUM		LATITUDE	BWE	LONGITUD	BUG
OI MULIATE	mp-	-(6			33 36.525		117 55.363	
WATER DEP							SAP DEPTI	H(FT)
	<u> </u>	3	~ (.		PENETRATION (FT)		CODE LEM	14.5 GTH COLLECTED FOR ANALYSIS (FT
TARGET CO	RE LENGTH		FINAL CORE LENGTH (F	•1)	PENETRATION (FT)	. 0	CORE LEN	7.5
CORE DIAM			ATTEMPT		TIME STARTED	2 / 1160	TIME FINIS	HED
	1 1/2		of		12.0			
PEN. DEP.(FT)	RETRY. DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR VALUE/CHROMA)	SAMPLE ID BY D	ЕРТН	MISC
1	1	coorse Sand	none		Mr.			
2	2			d	ark 1rlh			
3	3			(grly			
4	4	cate			1 .			,
5	5	1						
6	6	51H						
7	7				<u> </u>			
8	8	Sand plu	4 - Lost	wy	retnerny	- 'reig	COAR	se sand 6"
9	9							
10	10							
11	11	,						
12	12						·····	
13	13							
14	14							
15	15						·	
16	16							
17	17							
18	18							
19	19							
20 NOTES	20							
	*******		***************************************	••••••				***************************************

ROJECT/SU	RVEY	0	anta	DATE	100	PROJECT MANAGER	i i	RECORDER
	MA	Mila K	ave.		218708	Towe	<u> </u>	15WB
DI MOITATE	10 A	211	NAV DATUM		LATITUDE S	PROJECT MANAGER SUSJA PTH-TIDE	LONGITUDE	RECORDER BWB 7.85.362 (FT) 4.5
PROJECT/SURVEY YOUNG STATION ID WATER DEPTH (FT) 7.5			TIDE (FT)		MLLW (FT) = WATER DE	PIH · TIDE	SAP DEPTH	(FT)
	7	,. C	6.0	6.0		2	}	4.5
TARGET CO	RE LENGIM	(FT) (SAP DEPTH - ML	L FINAL CORE LENGTH (FT)	PENETRATION (FT)	((((((((((((((((((((CORE LENG	TH COLLECTED FOR ANALYSIS (FT
OODE DIAM	(.0		ATTEMPT		TIME STARTED ,	(14.5)	TIME FINISH	7.0
CORE DIAME	1 1/2		of		4:1	15		
PEN. DEP.(FT)	RETRY. DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR VALUE/CHROMA)	SAMPLE ID BY E	ЕРТН	MISC
1	1	Sard			4	7		
2	2	sard			elli.	mpuu		
3	3	Sand Sout	Worl		gray			
4	4	salt	1	1	- / 0			1
5	5	Salt/Sar	ance sand coance san					
6	6	very con	arce sand		A Company of the Comp	MPIL		
7	7	very o	ioanse sa	4				
8	8	•						
9	9							
10	10							
11	11							
12	12							
13	13				<u> </u>			
14	14							
15	15							
16	16							
17	17							
18	18							
19	19							
20	20							
NOTES		*******	*************************		******************************	***********************		

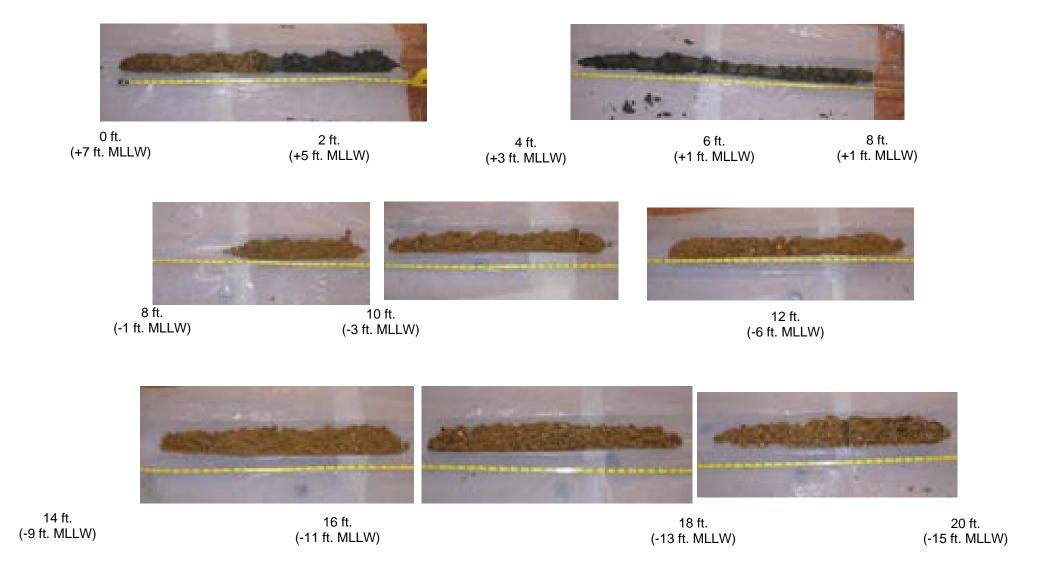
.

ROJECT/SU	JRVEY	A 0.0	Nr.	DATE	2.8.08	PROJECT MANAGER		RECORDER	
TATION ID	VIN	enna pa	NAV DATUM	1 <			LONGITUDE	LONGITUDE	
HAHUN ID	MP	anna pa	NAD83	NAD83					
VATER DEP					MLLW (FT) = WATER DEPTH - TIDE		SAP DEPTH		
	3-	<u> 6 4.0 </u>	FINAL CORE LENGTH (FT)			5	CODE I ENG	HS 135 145 BTH COLLECTED FOR ANALYSIS (FT	
ARGET CO	RE LENGTH ((FT) (SAP DEPTH - MLL	FINAL CORE LENGTH (FT)		PENETRATION (FT)		JONE LENG	FTH COLLECTED FOR ANALYSIS (FT	
ORE DIAM	ETER (IN)	5 9.5	ATTEMPT	<i>y</i> (TIME STARTED	-7 -	TIME FINISH	HED .	
	1 1/2		of		TIME STARTED				
PEN. DEP.(FT)	RETRY. DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR _VALUE/CHROMA)	SAMPLE ID BY (DEPTH	MISC	
1	1	coarse			A	mpiz	Ų		
2	2	sand		De	anle		· · · · · · · · · · · · · · · · · · ·		
3	3	•	nore		400	4			
4	4	Sity,				1	- / 1	1	
5	5	Sity Sand Sitt				Wb 13	- [4 - 7 . 1	(24)	
6	6	SIH					ad (m)		
7	7							, A. I. S.	
8	8	7		Cor	n pressed	V		1 to lest n	
9	9							I ft lest in catcher - very coorse	
10	10							3000	
11	11			-					
12	12			-					
13	13								
14	14								
15	15				<u> </u>				
16	16								
17	17				<u></u>				
18	18								
19	19			-					
20 NOTES	20								
***************************************	,	*********************	***************************************		**************************			***************************************	

PROJECT/SI	URVEY	4.4. 0.4.	1.	DATE	7/1/2	PROJECT MANA	GER	RECORDER	
	γru	anina pan	ie		48/08	Ser.	<u>G</u>	1 SW	
STATION ID	0 A D	177	NAV DATUM		LATITUDE		LONGITUE	DE	
1. 7			NAD83		33 % MLLW (FT) = WATER DI	. SZZ		LONGITUDE SAP DEPTH (FT)	
WATER DEP	TH (FT)		TIDE (FT)	:	MLLW (FT) = WATER DI	EPTH • TIDE >	SAPDEPI	14.5	
		1.Z	FINAL CORE LENGTH (F	-T\	PENETRATION (FT)	>		IGTH COLLECTED FOR ANALYSIS (FT	
TARGET CO					PENETRATION (F1)		COKE LEI	1011 COLLECTED FOR MAKE 1919 (F.	
CORE DIAM	ETED (IN)	,.2	ATTEMPT)	TIME STARTED	•	TIME FINI	SHED	
CURE DIAM	1 1/2		of		2	555			
PEN.	REIRV.				COLOR				
DEP.(FT)	DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	_VALUE/CHROMA)	SAMPLE	ID BY DEPTH	MISC	
1	1	hert silt	<u> </u>						
2	2	Some	none	L	k aray	mp	134		
3	3	Sitt		(any				
4	4	6			1		V	ŧ.	
5	5	Coorse				mp	130		
6	6	271-0							
7	7	طر							
8	8								
9	9								
10	10								
11	11								
12	12								
13	13								
14	14								
15	15								
16	16								
17	17								
18	18								
19	19								
20	20								
NOTES									
************		***************************************	*4444**44**10*15************************	*************	445549444994449744945454444444444444444	************	************************	*********	

ROJECT/SU	IRVEY	Mila Dan	JL.	DATE	2.8-08	PROJECT MANAGER		RECORDER
TATION ID	O	11	NAV DATUM	<u> </u>			LONGITUDE	
PROJECT/SURVEY MANLA PAN STATION ID VN P - 14			NAD83				SAP DEPTH (FT)	
WATER DEPTH (FT)			TIDE (FT)		MLLW(FT) = WATER DEPTH - TIDE + S - S			4.5
ARGET CO			FINAL CORE LENGTH	FT)	PENETRATION (FT)		E	GTH COLLECTED FOR ANALYSIS (FT
ORE DIAMI	9. ETER (IN)	()	ATTEMPT)	TIME STARTED	- ` <u>`</u>	TIME FINIS	HED HED
	1 1/2		of		TIME STARTED 210			
PER. DEP.(FT)	DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR _VALUE/CHROMA)	SAMPLE ID BY C	EPTH	MISC
1	1	Sitysand						
2	2	Sity sand coorse sand				mp 14 (<i>)</i>	
3	3		nen	d	Mary .			
4	4	\downarrow			1			P
5	5	fim sitt						
6	6	SIV					احسا	
7	7	5md ph	†			MOUL		1
8	8							
9	9							
10	10	į						
11	11				·····			
12	12							
13	13							
14	14							
15	15							
16	16							
17	17							
18	18							
19	19							
20	20							
NOTES			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11001571140111011114144444444	************************************	14110100711164-64	
***************************************	,							

ROJECT/SU	RVEY	^	,	DATE	7/0	PROJECT MANAGER		RECORDER
	Ma	riva for	NAV DATIBL	l	2/8-	Br C	L ONGITUDE	DWG
PROJECT/SURVEY MANINA PAME STATION ID MP S NAD 83			NAD83	DATE 12/8- PROJUNDATUM IAD83 SS 36.9		6.539	11,-7	SS.305
WATER DEPT	TH (FT)		TIDE (FT)		MLLW (FT) = WATER DE	PTH - TIDE	SAP DEPTH	(+ S
TARGET CO	S S	(FT) (SAP DEPTH - MLL	FINAL CORE LENGTH (F	T)	PENETRATION (FT)			TH COLLECTED FOR ANALYSIS (FT
•	7.9		8-0		14.	<u>s</u>	8	
CORE DIAME	1 1/2		ATTEMPT of		TIME STARTED 33	0	TIME FINISH	JED .
PEN. DEP.(FT)	RETRY. DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR VALUE/CHROMA)	SAMPLE ID BY D	DEPTH	MISC
1	1	sitt						
2	2		none	Q1	m		:	
3	3	10	1	Ů	,			
4	4	(borse						
5	5	Sand						
6	6	Thell			MANAGEMENT			
7	7	6						
8	8	Tzl	Te .				,	
9	9	<u> </u>						
10	10							
11	11							
12	12							
13	13							
14	14							
15	15							
16	16							
17	17							
18	18							
19	19							
20 NOTES	20						:	
			*****************************		***************************************	***************************************		
	,							


SEDIMENT CORING LOG

PROJECT/SU	URVEY			DATE		PROJECT MANAG	ER	RECORDER	
	MAR	INA PAR	۷			Ja77	7	BWO .	
STATION ID	n D -11	,	NAD83		33 36.521		LONGITUDI	117 SS-327	
MARINA PARI STATION ID MP-16 WATER DEPTH (FT)			TIDE (FT)		MLLW (FT) = WATER DEPTH-TIDE		SAP DEPT	I(FT)	
		SH 2-14	-1.5		PENETRATION (FT)	1		14.5	
TARGET CO	RE LENGTH		FINAL CORE LENGTH	(FT)	PENETRATION (FT)	-9.0	CORE LEN	GTH COLLECTED FOR ANALYSIS (FT	
CORE DIAM		1	ATTEMPT		TIME STARTED	15	TIME FINIS	8.5-	
	1 1/2		of		2:40				
PEN. DEP.(FT)	DEP.(FT)	SEDIMENT TYPE	ODOR	(HUE	COLOR VALUE/CHROMA)	SAMPLE II	BY DEPTH	MISC	
1	1		À	a	V	MPL	64		
2	2	Coanse Sand Shell		(3	lea lea				
3	3	Shell			\				
4	4	Silt	none					1	
5	5		(-						
6	6	vera				mP (61		
7	7	coarse sout shell				Į,			
8	8	Shell							
9	9		V			2017			
10	10								
11	11						· · · · · · · · · · · · · · · · · · ·		
12	12						<u> </u>		
13	13								
14	14								
15	15		,						
16	16								
17	17								
18	18								
19	19						·····		
20	20								
NOTES		ma app	ears to	be c	oare s	and on	un 2'S	ullage	

notes ara appears to be coarse sand over 2' Sult layer

12 rde lain by very coarse sand

MP-1

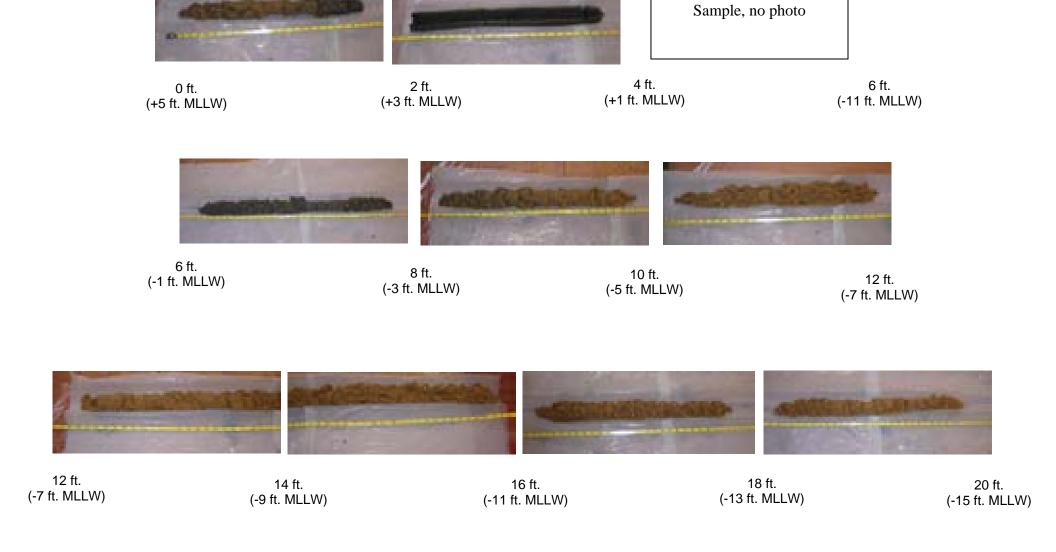
16 ft.

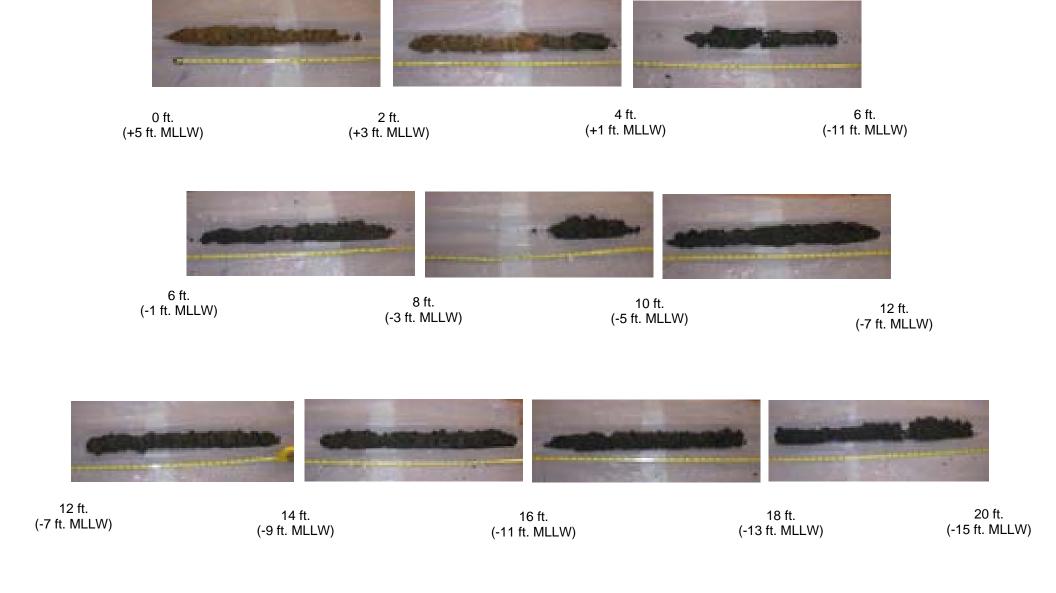
(-11 ft. MLLW)

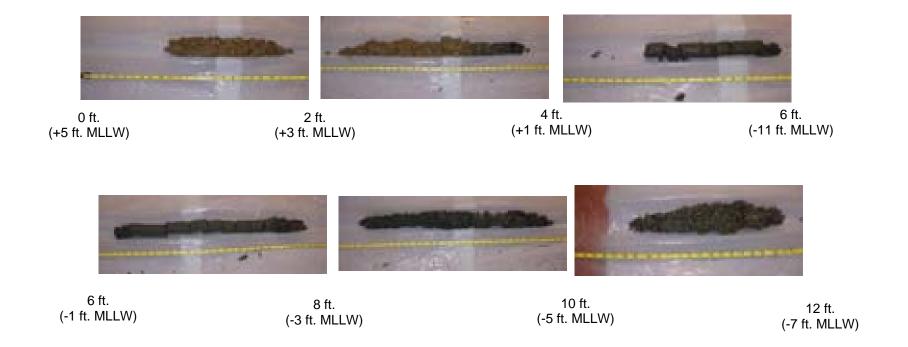
18 ft.

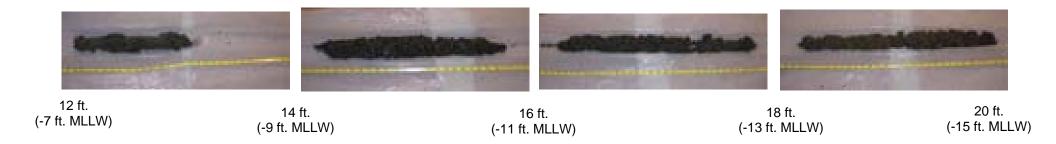
(-13 ft. MLLW)

20 ft.

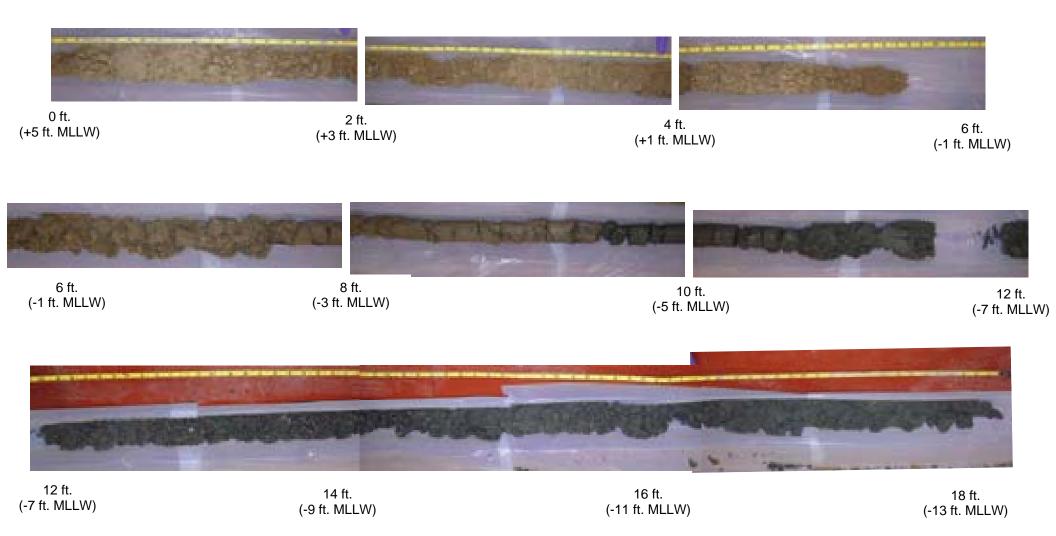

(-15 ft. MLLW)

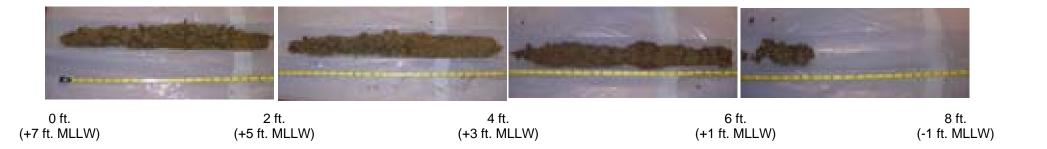

12 ft.


(-7 ft. MLLW)

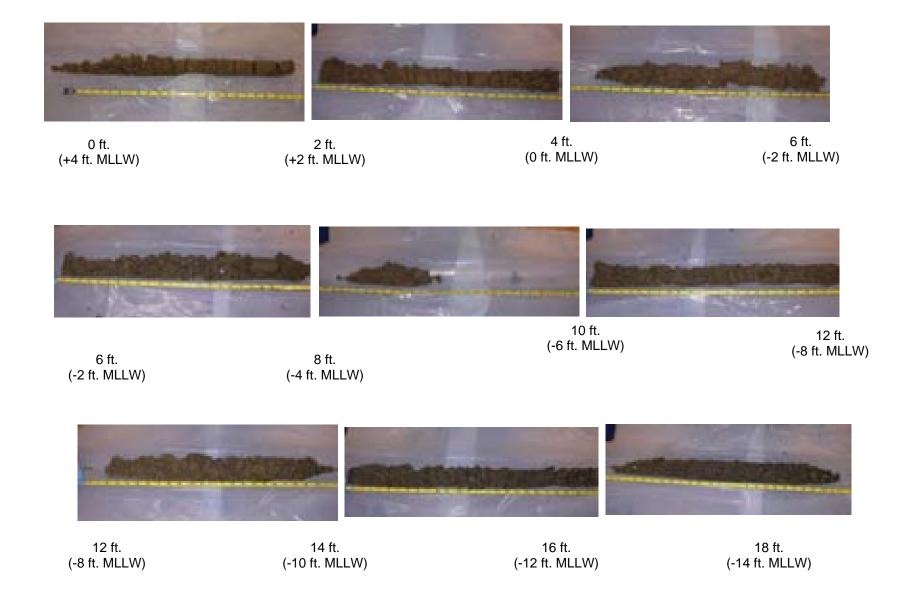

14 ft.

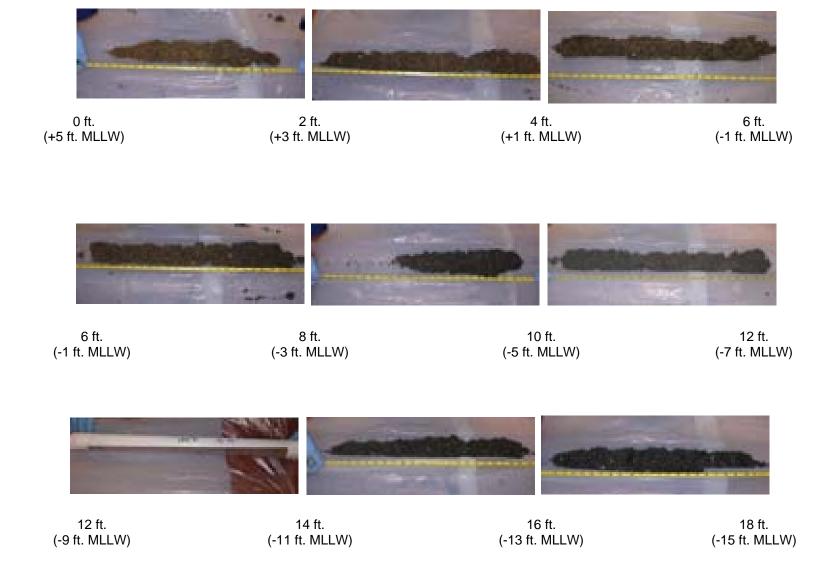
(-9 ft. MLLW)

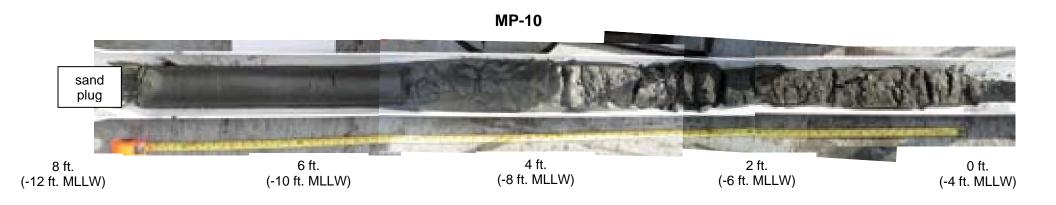


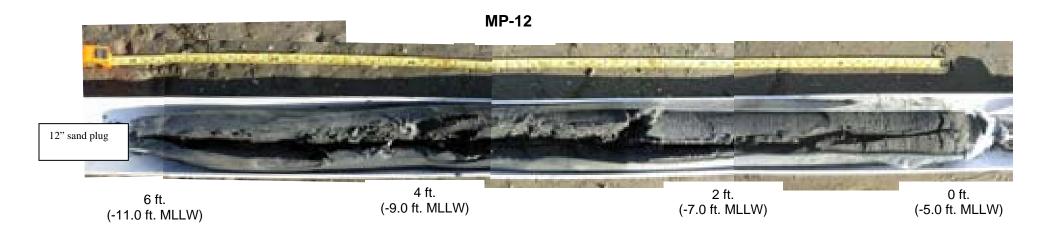


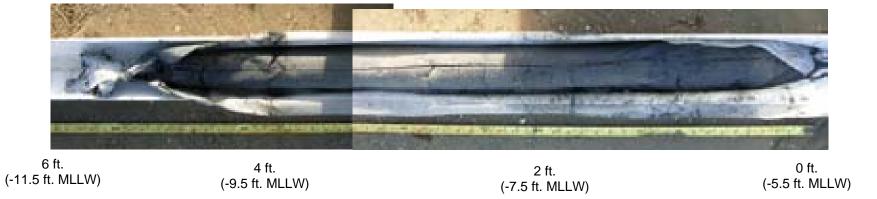
MP-6a

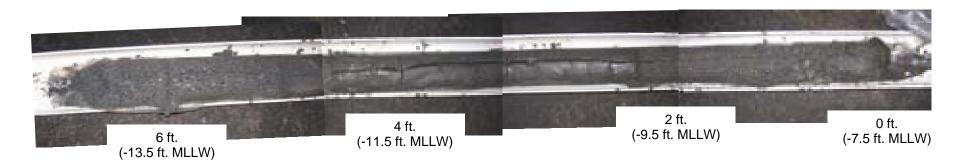


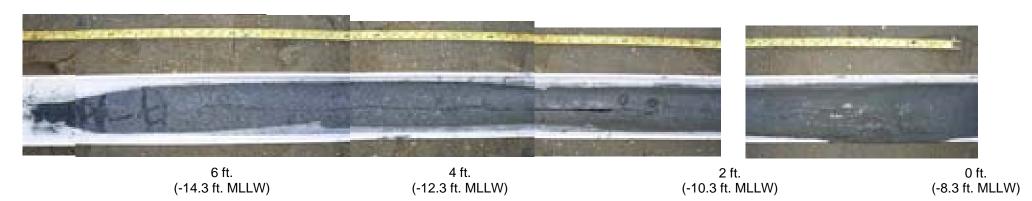

MP-6b

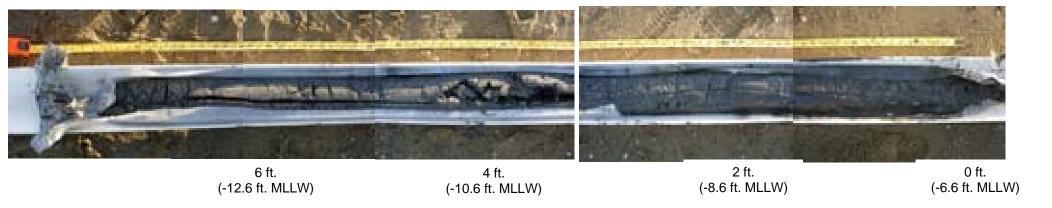












MP-13

4 ft. (-9 ft. MLLW) 2 ft. (-7 ft. MLLW)

0 ft. (-5 ft. MLLW)

8 ft. (-13 ft. MLLW)

6 ft. (-11 ft. MLLW) 4 ft. (-9 ft. MLLW)

Appendix B Chemistry Data

Newfields Northwest Marina Park

.

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

		Γ	Γ	Γ	Γ			Τ	
COMP B-L	COMP B-U	COMP A-L	COMP A-U	REF-05	REF-05	REF-05	(microns)	Phi Size	Sample No.
100,0	100.0	100.0	100.0	100.0	100.0	100.0	3/8"	ယ်	
99.0	99.9	98.3	99.6	100.0	100.0	100.0	#4	-2	Gravel
94.8	97.7	90.4	97.8	100.0	99.7	99.9	(2000)	5 -	
81.5	90.5	69,8	91.6	99.6	99.5	99.7	(1000)	0	Very Coarse Sand
56.2	71.9	31.1	76.0	99.3	99.1	99,4	#35 (500)	1	Coarse Sand
25.6	40.5	4.7	48.4	98.7	98.5	98.9	#60 (250)	2	Medium Sand
8.2	14.6	1.1	16,2	97.9	97.7	98.1	#120 (125)	ယ	Fine Sand
1.1	4.2	0.7	4.2	93.8	93.9	94.3	#230 (62)	4	Very Fine Sand
NA A	2.5	ΝĀ	2.9	76.8	80.7	73.3	31.00	5	
NA A	2.1	N A	2.4	58.4	58.9	57.2	15.60	6	Sit
Z A	_1,&	N A	2.1	43.0	42.8	42.7	7.80	7	품
Z	1.5	NA A	1.6	33.6	33.5	33.4	3.90	8	
¥	1.3	Z.	1.4	28.4	28.4	28.2	2.00	g	Clay
Z.	1.0	NA	0.9	17.9	17.8	17.7	1.00	10	ay

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Newfields Northwest Marina Park

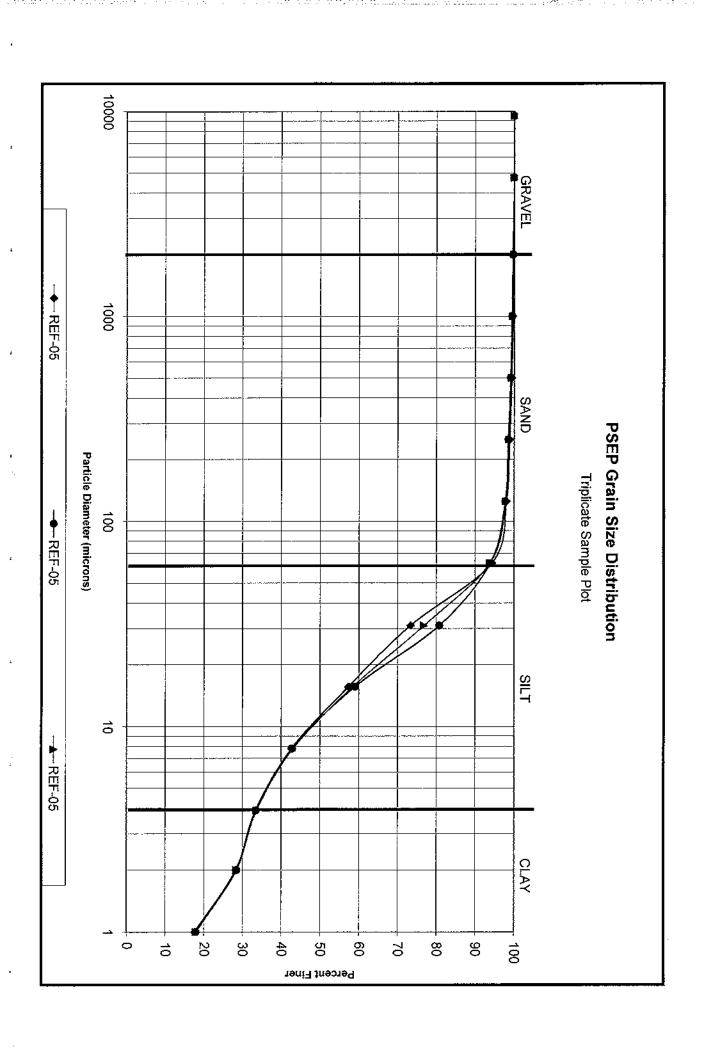
Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

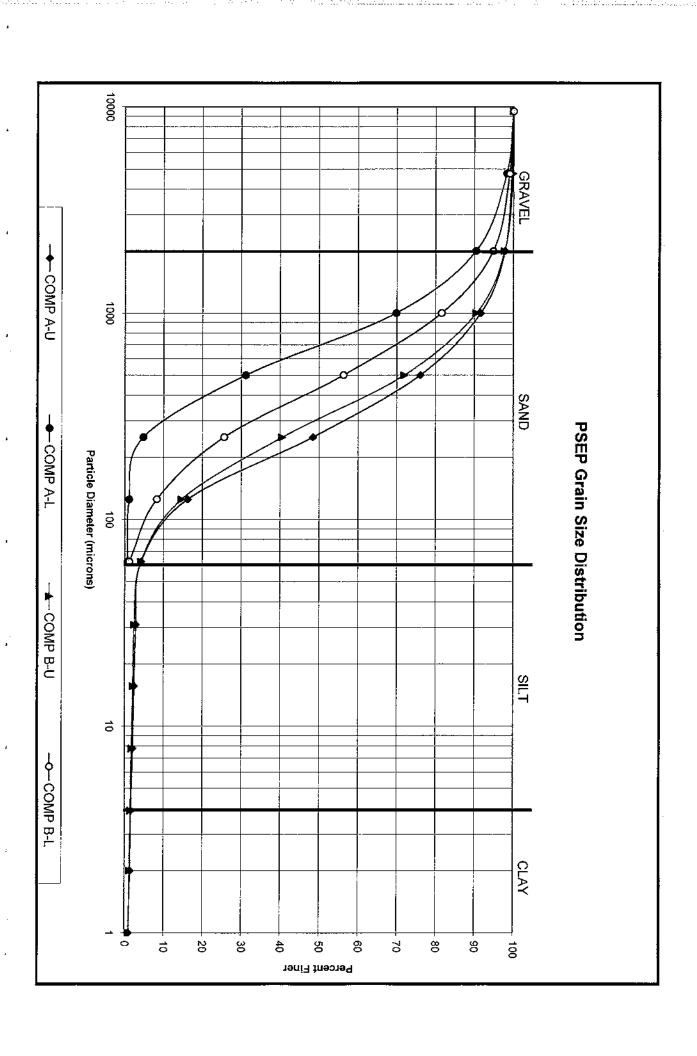
COMP B-L	COMP B-U	COMP A-L	COMP A-U	REF-05	REF-05	REF-05	(microns)	Sieve Size	Phi Size	Sample No.
5.2	2.3	9.6	2.2	0.0	0.3	0.1	(2000)	>#10	>-1	Grave
13.2	7.3	20.6	6.2	0.4	0.2	0.2	(2000-1000)	10 to 18	-1 to 0	Very Coarse Sand
25.3	18.6	38.7	15.6	0.3	0.3	0.3	(1000-500)	18-35	0 to 1	Coarse Sand
30.6	31.3	26.4	27.7	0.6	0.6	0.5	(500-250)	35-60	1 to 2	Medium Sand
17.4	26.0	3.7	32.2	0.8	0.8	0.8	(250-125)	60-120	2 to 3	Fine Sand
7.1	10.4	0.4	12.0	4.1	3.9	3.8	(125-62)	120-230	3 to 4	Very Fine Sand
ΝA	1.7	NA	1.3	17.0	13.2	21.0	62.5-31.0	3	4 to 5	Coarse Silt
NA	0.3	NA	0.4	18.4	21.8	16.1	31.0-15.6		5 to 6	Medium Sitt
Z >	0.3	NΑ	0.4	15.4	16.2	14.6	15.6-7.8	,	6 to 7	Fine Sitt
NA	0.3	NA	0.4	9.4	9.3	9.3	7.8-3.9		7 to 8	Very Fine Silt
NΑ	0.2	NA	0.2	5.3	5.0	5.1	3.9-2.0		8 to 9	
Ž	0.3	NA	0.5	10.4	10.6	10.6	2.0-1.0		9 to 10	Clay
Z A	1.0	AN	6.0	17.9	17.8	17.7	<u> </u>		< 10	
	4.2	0.7	4.2	93.8	6.86	94.3	(<62)	<230	<4	Total Fines

Notes to the Testing:

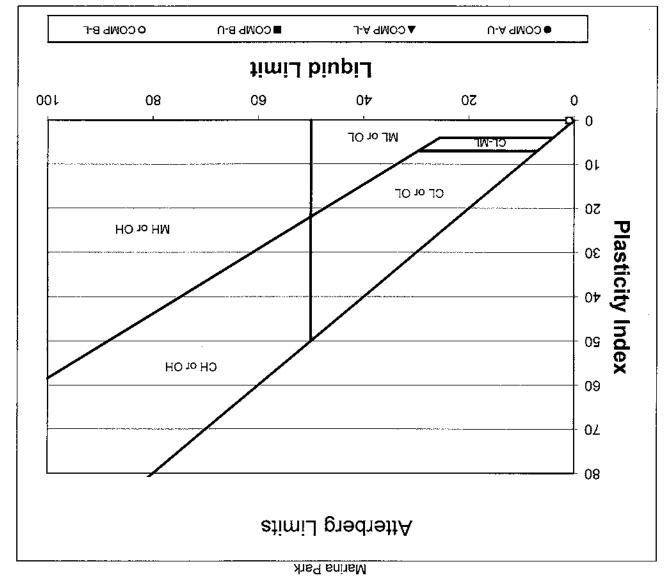
1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Client Trip. Sample ID: REF	ARI Trip. Sample ID: OB990	Client: Nev
REF-05	990	Newfields Northwest
Page:	Batch No.:	Project No.:
1 of 1	OC80-1	Marina Park


%RSI	STDEV	AVE	REF-C	REF-C	REF-C	Sample ID	
L	<		υ,	<u>ত</u>	5	ō	
NA	NA	NA	100.0	100.0	100.0	ပ်	
0.00	0.00	100.00	100.0	100.0	100.0	-2	
0.18	0.18	99.86	100.0	99.7	99.9	-	
0.13	0.13	99.61	99.6	99.5	99.7	0	:
0.15	0.15	99.29	99.3	99.1	99.4		Rei
0.18	0.18	98.72	98.7	98.5	98.9	2	ative Stand
0.18	0.18	97.91	97.9	97.7	98.1	3	Relative Standard Deviation,
0.31	0.29	94.00	93.8	93.9	94.3	4	n, By Phi Size
4.81	3.70	76.93	76.8	80.7	73.3	5	ize
1.49	0.87	58.16	58.4	58.9	57.2	ō.	
0.39	0.17	42.80	43.0	42.8	42.7	7	
0.41	0.14	33.48	33.6	33.5	33.4	8	
0.36	0.10	28.34	28.4	28.4	28.2	9	
0.70	0.12	17.81	17.9	17.8	17.7	10	


	The Tri	The Triplicate Applies To The Following Samples	samples			
Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio Data (95-105) Qualifier	φ	Pipette Portion (5.0- 25.0g)
REF-05	12/2/2008	12/11/2008	12/24/2008	99.2		14.8
REF-05	12/2/2008	12/11/2008	12/24/2008	100.0		14,6
REF-05	12/2/2008	12/11/2008	12/24/2008	100.3		14.7
COMP A-U	12/5/2008	12/12/2008	12/24/2008	100.5		5.5
COMP A-L	12/5/2008	12/12/2008	12/24/2008	100.1	SS	6.0
COMP B-U	12/5/2008	12/12/2008	12/24/2008	100.8		5.4
COMP B-L	12/5/2008	12/12/2008	12/24/2008	99.1	SS	2.5

* ARI Internal QA limits = 95-105%


Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Newfields Northwest

	naca	Plastic Limit	biupiJ timiJ	Plasticity Index	noitsailitnabl alqms2
	Non-Plastic	AN	ΑN	ΑN	COMP A-U
	Non-Plastic	AN	. AN	ΑN	COMP A-L
	Non-Plastic	ΑN	ΑN	ΑN	COMP B-U
ı	Non-Plastic	ΑN	ΑN	ΑN	COMP B-L

OC80

SAMPLE RESULTS-CONVENTIONALS OC80-Newfields Northwest

Matrix: Sediment

Data Release Authorized A Reported: 01/02/09

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Client ID: COMP A-U ARI ID: 08-32709 OC80A

Analyte	Date	Method	Units	RL	Sample
Total Solids	12/08/08 120808#3	EPA 160.3	Percent	0.01	84.60
Preserved Total Solids	12/09/08 120908#2	EPA 160.3	Percent	0.01	82.80
N-Ammonia	12/11/08 121108#1	EPA 350.1M	mg-N/kg	0.12	1.20
Sulfide	12/08/08 120808#1	EPA 376.2	mg/kg	1.18	7.56
Total Organic Carbon	12/11/08 121108#1	Plumb,1981	Percent	0.020	0.151
HEM Oil & Grease	12/30/08 123008#1	9071 B	mg/kg	230	< 230 U
HEM-ST NP Oil & Grease	12/30/08	9071 B	mg/kg	230	< 230 U
HEM Polar Oil & Grease	12/30/08	9071 B	mg/kg	230	< 230 U

RLAnalytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

SAMPLE RESULTS-CONVENTIONALS OC80-Newfields Northwest

Matrix: Sediment

Data Release Authorized Reported: 01/02/09

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Client ID: COMP A-L ARI ID: 08-32710 OC80B

Analyte	Date	Method	Units	RL	Sample	_
Total Solids	12/08/08 120808#3	EPA 160.3	Percent	0.01	90.30	
Preserved Total Solids	12/09/08 120908#2	EPA 160.3	Percent	0.01	82.00	
N-Ammonia	12/11/08 121108#1	EPA 350.1M	mg-N/kg	0.11	< 0.11	Ü
Sulfide	12/08/08 120808#1	EPA 376.2	mg/kg	1.20	< 1.20	U
Total Organic Carbon	12/11/08 121108#1	Plumb,1981	Percent	0.020	0.076	
HEM Oil & Grease	12/30/08 123008#1	9071 B	mg/kg	215	< 215	Ü
HEM-ST NP Oil & Grease	12/30/08	9071 B	mg/kg	215	< 215	U
HEM Polar Oil & Grease	12/30/08	9071 B	mg/kg	215	< 215	U

Analytical reporting limit RL

Ammonia determined on 2N KCl extracts.

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS OC80-Newfields Northwest

Matrix: Sediment

Data Release Authorized

Reported: 01/02/09

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Client ID: COMP B-U ARI ID: 08-32711 OC80C

Analyte	Date	Method	Units	RL	Sample
Total Solids	12/08/08 120808#3	EPA 160.3	Percent	0.01	89.30
Preserved Total Solids	12/09/08 120908#2	EPA 160.3	Percent	0.01	83.60
N-Ammonia	12/11/08 121108#1	EPA 350.1M	mg-N/kg	0.10	0.17
Sulfide	12/08/08 120808#1	EPA 376.2	mg/kg	1.16	< 1.16 U
Total Organic Carbon	12/11/08 121108#1	Plumb,1981	Percent	0.020	0.055
HEM Oil & Grease	12/30/08 123008#1	9071 В	mg/kg	218	< 218 U
HEM-ST NP Oil & Grease	12/30/08	9071 B	mg/kg	218	< 218 U
HEM Polar Oil & Grease	12/30/08	9071 B	mg/kg	218	< 218 U

RL Analytical reporting limit

Ammonia determined on 2N KCl extracts.

U Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS OC80-Newfields Northwest

Matrix: Sediment

Data Release Authorized

Reported: 01/02/09

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Client ID: COMP B-L ARI ID: 08-32712 OC80D

Analyte	Date	Method	Units	RL	Sample	
Total Solids	12/08/08 120808#3	EPA 160.3	Percent	0.01	86.60	
Preserved Total Solids	12/09/08 120908#2	EPA 160.3	Percent	0.01	85.70	
N-Ammonia	12/11/08 121108#1	EPA 350.1M	mg-N/kg	0.10	< 0.10	U
Sulfide	12/08/08 120808#1	EPA 376.2	mg/kg	1.15	4.25	
Total Organic Carbon	12/11/08 121108#1	Plumb,1981	Percent	0.020	0.071	
HEM Oil & Grease	12/30/08 123008#1	9071 B	mg/kg	226	< 226	U
HEM-ST NP Oil & Grease	12/30/08	9071 B	mg/kg	226	< 226	U
HEM Polar Oil & Grease	12/30/08	9071 B	mg/kg	226	< 226	U

RL Analytical reporting limit

U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

The Control of the Co

METHOD BLANK RESULTS-CONVENTIONALS OC80-Newfields Northwest

Matrix: Sediment

Data Release Authorized

Reported: 01/02/09

Project: MARINA PARK

Event: NA
Date Sampled: NA
Date Received: NA

Analyte	Date Uni		Blank
Total Solids	12/08/08	Percent	< 0.01 U
Preserved Total Solids	12/09/08	Percent	< 0.01 U
N-Ammonia	12/11/08 12/11/08	mg-N/kg	< 0.10 U < 0.10 U
Sulfide	12/08/08	mg/kg	< 1.00 U
Total Organic Carbon	12/11/08	Percent	< 0.020 U
HEM Oil & Grease	12/30/08	mg/kg	260

LAB CONTROL RESULTS-CONVENTIONALS OC80-Newfields Northwest

Matrix: Sediment

Data Release Authorized Reported: 01/02/09

Project: MARINA PARK

Event: NA
Date Sampled: NA
Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Sulfide	12/08/08	mg/kg	119	114	104.8%
Total Organic Carbon	12/11/08	Percent	0.489	0.500	97.8%

STANDARD REFERENCE RESULTS-CONVENTIONALS OC80-Newfields Northwest

Matrix: Sediment

Data Release Authorized Reported: 01/02/09

Project: MARINA PARK

Event: NA

Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
N-Ammonia SPEX 28-24AS	12/11/08 12/11/08	mg-N∕kg	94.6 102	100 100	94.6% 102.0%
Total Organic Carbon NIST #8704	12/11/08	Percent	3.04	3.35	90.7%
HEM Oil & Grease Env. Exp. #104629	12/30/08	mg/kg	8,180	8,000	102.2%

REPLICATE RESULTS-CONVENTIONALS OC80-Newfields Northwest

Matrix: Sediment

Data Release Authorized Reported: 01/02/09

Project: MARINA PARK Event: NA Date Sampled: 11/26/08 Date Received: 12/05/08

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: OC80A Client II	: COMP A-U		*****		
Total Solids	12/08/08	Percent	84.60	83.90 83.70	0.6%
Preserved Total Solids	12/09/08	Percent	82.80	83.10 83.30	0.3%
N-Ammonia	12/11/08	mg-N/kg	1.20	1.06 1.27	9.1%
Sulfide	12/08/08	mg/kg	7.56	3.00	86.4%
Total Organic Carbon	12/11/08	Percent	0.151	0.127 0.110	15.9%
HEM Oil & Grease	12/30/08	mg/kg	< 230	< 231	АИ

MS/MSD RESULTS-CONVENTIONALS OC80-Newfields Northwest

Matrix: Sediment
Data Release Authorized
Reported: 01/02/09

Project: MARINA PARK Event: NA Date Sampled: 11/26/08 Date Received: 12/05/08

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: OC80A Client ID:	COMP A-U					
N-Ammonia	12/11/08	mg-N/kg	1.20	110	115	94.8%
Sulfide	12/08/08	mg/kg	7.56	139	136	96.6%
Total Organic Carbon	12/11/08	Percent	0.151	0.710	0.578	96.7%
HEM Oil & Grease	12/30/08	mg/kg	< 230	1,970	2,310	85.3%

TOTAL METALS

Page 1 of 1

Sample ID: COMP A-U

SAMPLE QC Report No: OC80-Newfields Northwest

Lab Sample ID: OC80A LIMS ID: 08-32709 Matrix: Sediment

Data Release Authorized;

Reported: 12/17/08

Date Sampled: 11/26/08 Date Received: 12/05/08

Project: MARINA PARK

Percent Total Solids: 83.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	12/10/08	6010B	12/15/08	7440-38-2	Arsenic	6	6	U
3050B	12/10/08	6010B	12/15/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	12/10/08	6010B	12/15/08	7440-47-3	Chromium	0.6	4.8	
3050B	12/10/08	6010B	12/15/08	7440-50-8	Copper	0.2	2.8	
3050B	12/10/08	6010B	12/15/08	7439-92-1	Lead	2	2	U
CLP	12/10/08	7471A	12/15/08	7439-97-6	Mercury	0.05	0.05	U
3050B	12/10/08	6010B	12/15/08	7440-02-0	Nickel	1	3	
3050B	12/10/08	7740	12/15/08	7782-49-2	Selenium	0.2	0.2	U
3050B	12/10/08	6010B	12/15/08	7440-22-4	Silver	0.3	0.3	Ü
305 0 B	12/10/08	6010B	12/15/08	7440-66-6	Zinc	1	10	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS Page 1 of 1

Lab Sample ID: OC80A LIMS ID: 08-32709 Matrix: Sediment

Data Release Authorized Reported: 12/17/08

Sample ID: COMP A-U

DUPLICATE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
Amanni e	6010D	6 11		0.00			
Arsenic	6010B	6 U	6 U	0.0%	+/- 6	L	
Cadmium	6010B	0.2 U	0.2 U	0.0%	+/- 0.2	L	
Chromium	6010B	4.8	4.9	2.1%	+/- 20%		
Copper	6010B	2.8	2.5	11.3%	+/- 20%		
Lead	6010B	2 U	2 U	0.0%	+/- 2	${f L}$	
Mercury	7471A	0.05 U	0.05 U	0.0%	+/- 0.05	${f L}$	
Nickel	6010B	3	2	40.0%	+/- 1	${f L}$	
Selenium	7740	0.2 U	0.2 U	0.0%	+/- 0.2	L	
Silver	6010B	0.3 U	0.3 U	0.0%	+/- 0.3	L	
Zinc	6010B	10	10	0.0%	+/- 20%		

Reported in mg/kg-dry

L-RPD Invalid, Limit = Detection Limit

^{*-}Control Limit Not Met

TOTAL METALS

Page 1 of 1

Sample ID: COMP A-U

MATRIX SPIKE

Lab Sample ID: OC80A

LIMS ID: 08-32709

Reported: 12/17/08

Matrix: Sediment Data Release Authorize QC Report No: OC80-Newfields Northwest Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Bogovoza	^
Analyce	Mechod	sampie	Spike	Added	Recovery	Ω
Arsenic	6010B	6 U	240	230	104%	
Cadmium	6010B	0.2 U	5 6. 7	57.6	98.4%	
Chromium	6010B	4.8	59.4	57.6	94.8%	
Copper	6010B	2.8	63.4	57.6	105%	
Lead	6010B	2 U	229	230	99.6%	
Mercury	7471A	0.05 U	0.55	0.496	111%	
Nickel	6010B	3	58	57.6	95.5%	
Selenium	7740	0.2 U	12.5	11.8	106%	
Silver	6010B	0.3 U	61.5	57.6	107%	
Zinc	6010B	10	67	57.6	99.0%	

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS
Page 1 of 1

Sample ID: COMP A-L SAMPLE

Lab Sample ID: OC80B

LIMS ID: 08-32710

Matrix: Sediment

Data Release Authorized Reported: 12/17/08 QC Report No: OC80-Newfields Northwest Project: MARINA PARK

rroject. ramami rama

Date Sampled: 11/26/08 Date Received: 12/05/08

Percent Total Solids: 88.6%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
							<u> </u>	
3050B	12/10/08	6010B	12/15/08	7440-38-2	Arsenic	6	6	U
3050B	12/10/08	6010B	12/15/08	7440-43-9	Cadmium	0.2	0.2	Ü
3050B	12/10/08	6010B	12/15/08	7440-47-3	Chromium	0.6	2.2	
3050B	12/10/08	6010B	12/15/08	7440-50-8	Copper	0.2	1.0	
305 0 B	12/10/08	6010B	12/15/08	7439-92-1	Lead	2	2	υ
CLP	12/10/08	7471A	12/15/08	7439-97-6	Mercury	0.06	0.06	U
3050B	12/10/08	6010B	12/15/08	7440-02-0	Nickel	1	1	U
3050B	12/10/08	7740	12/15/08	7782-49-2	Selenium	0.2	0.2	U
3050B	12/10/08	6010B	12/15/08	7440-22-4	Silver	0.3	0.3	U
3050B	12/10/08	6010B	12/15/08	7440-66-6	Zinc	1	6	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

1 of 1 SAMPLE

Lab Sample ID: OC80C LIMS ID: 08-32711

Matrix: Sediment

Data Release Authorized Reported: 12/17/08

Percent Total Solids: 86.8%

QC Report No: OC80-Newfields Northwest

Sample ID: COMP B-U

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	12/10/08	6010B	12/15/08	7440-38-2	Arsenic	5	6	
3050B	12/10/08	6010B	12/15/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	12/10/08	6010B	12/15/08	7440-47~3	Chromium	0.5	3.8	
3050B	12/10/08	6010B	12/15/08	7440-50-8	Copper	0.2	3.7	
3050B	12/10/08	6010B	12/15/08	7439~92-1	Lead	2	5	
CLP	12/10/08	7471A	12/15/08	7439-97-6	Mercury	0.05	0.05	
3050B	12/10/08	6010B	12/15/08	7440-02-0	Nickel	1	2	
3050B	12/10/08	7740	12/15/08	7782-49-2	Selenium	0.2	0.2	U
3050B	12/10/08	6010B	12/15/08	7440-22-4	Silver	0.3	0.8	
3050В	12/10/08	6010B	12/15/08	7440-66-6	Zinc	1	11	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS Page 1 of 1

Lab Sample ID: OC80D

LIMS ID: 08-32712

Matrix: Sediment

Data Release Authorized: Reported: 12/17/08

Percent Total Solids: 84.4%

Sample ID: COMP B-L

SAMPLE

QC Report No: OC80-Newfields Northwest Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Ω
3050B	12/10/08	6010B	12/15/08	7440-38-2	Arsenic	6	6	Ü
3050B	12/10/08	6010B	12/15/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	12/10/08	6010B	12/15/08	7440-47-3	Chromium	0.6	3.2	
3050B	12/10/08	6010B	12/15/08	7440-50-8	Copper	0.2	2.4	
3050B	12/10/08	6010B	12/15/08	7439-92-1	Lead	2	2	U
CLP	12/10/08	7471A	12/15/08	7439-97-6	Mercury	0.05	0.05	U
3050B	12/10/08	6010B	12/15/08	7440-02-0	Nickel	1	2	
3050B	12/10/08	7740	12/15/08	7782-49-2	Selenium	0.2	0.2	U
3050B	12/10/08	6010B	12/15/08	7440-22-4	Silver	0.3	0.3	Ü
3050B	12/10/08	60 1 0B	12/15/08	7440-66-6	Zinc	1	6	
	,,		, _0, 00				-	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS
Page 1 of 1

Lab Sample ID: OC80MB

LIMS ID: 08-32710 Matrix: Sediment

Data Release Authorized Reported: 12/17/08

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050в	12/10/08	6010B	12/15/08	7440-38-2	Arsenic	5	5	U
3050B	12/10/08	6010B	12/15/08	7440-43-9	Cadmium	0.2	0.2	U
3050B	12/10/08	6010B	12/15/08	7440-47-3	Chromium	0.5	0.5	U
3050B	12/10/08	6010B	12/15/08	7440-50-8	Copper	0.2	0.2	Ü
3050B	12/10/08	6010B	12/15/08	7439-92-1	Lead	2	2	U
CLP	12/10/08	7471A	12/15/08	7439-97-6	Mercury	0.05	0.05	U
3050B	12/10/08	6010B	12/15/08	7440-02-0	Nickel	1	1	U
3050B	12/10/08	7740	12/15/08	7782-49-2	Selenium	0.2	0.2	U
3050B	12/10/08	6010B	12/15/08	7440-22-4	Silver	0.3	0.3	Ü
3050B	12/10/08	6010B	12/15/08	7440-66-6	Zinc	1	1	U

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: OC80LCS

LIMS ID: 08-32710 Matrix: Sediment

Data Release Authorized

Reported: 12/17/08

Sample ID: LAB CONTROL

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spîke	%	
Analyte	Method	Found	Added	Recovery	Q
Arsenic	6010B	198	200	99.0%	
Cadmium	6010B	49.0	50.0	98.0%	
Chromium	6010B	46.9	50.0	93.8%	
Copper	6010B	50.1	50.0	100%	
Lead	6010B	200	200	100%	
Mercury	747 1 A	1.14	1.00	114%	
Nickel	6010B	46	50	92.0%	
Selenium	7740	9	10	90.0%	
Silver	6010B	54.1	50.0	108%	
Zinc	6010B	47	50	94.0%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Sample ID: COMP A-U

QC Report No: OF16-Newfields Northwest

SAMPLE

Lab Sample ID: OF16A LIMS ID: 08-34349 Matrix: Sediment

Data Release Authorize

Reported: 12/29/08

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Percent Total Solids: 83.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	12/23/08	200.8	12/26/08	7440-38-2	Arsenic	0.2	2.0	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS Page 1 of 1 Sample ID: COMP A-L

SAMPLE

Lab Sample ID: OF16B LIMS ID: 08-34350

Matrix: Sediment

Data Release Authorized Reported: 12/29/08

Project: MARINA PARK

QC Report No: OF16-Newfields Northwest

Date Sampled: 11/26/08 Date Received: 12/05/08

Percent Total Solids: 86.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	12/23/08	200.8	12/26/08	7440-38-2	Arsenic	0.2	2.1	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Sample ID: COMP B-U

SAMPLE

Lab Sample ID: OF16C LIMS ID: 08-34351

Matrix: Sediment

Data Release Authorized Reported: 12/29/08

QC Report No: OF16-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Percent Total Solids: 87.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	12/23/08	200.8	12/26/08	7440-38-2	Arsenic	0.2	2.2	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Sample ID: COMP B-L

SAMPLE

Lab Sample ID: OF16D LIMS ID: 08-34352 Matrix: Sediment

Data Release Authorized Reported: 12/29/08

QC Report No: OF16-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Percent Total Solids: 85.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050В	12/23/08	200.8	12/26/08	7440-38-2	Arsenic	0.2	1.9	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: OF16MB

LIMS ID: 08-34349 Matrix: Sediment

Data Release Authorized;

Reported: 12/29/08

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: OF16-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL.	mg/kg-dry	Q
3050B	12/23/08	200.8	12/26/08	7440-38-2	Arsenic	0.2	0.2	Ū

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: OF16LCS

LIMS ID: 08-34349 Matrix: Sediment

Data Release Authorized

Reported: 12/29/08

Sample ID: LAB CONTROL

QC Report No: OF16-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spîke Added	% Recovery	Q
Arsenic	200.8	26.3	25.0	105%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

TBT SURROGATE RECOVERY SUMMARY

Matrix: Sediment QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Client ID	TPRT	TPNT	TOT OUT
70MD 7 11	1000	22684	-
COMP A-U	103%	226%*	1
COMP A-L	84.1%	92.8%	0
COMP B-U	102%	106%	0
MB-120908	83.9%	170%*	1
LCS-120908	94 . 6 %	268%*	1
COMP B-L	101%	185%*	1
COMP B-L MS	96.0%	102%	0
COMP B-L MSD	97.3%	106%	0

	LCS/MB LIMIT	s QC LIMITS
(TPRT) = Tripropyl Tin C	chloride (30-160)	(30-160)
(TPNT) = Tripentyl Tin C	chloride (30-160)	(30-160)

Prep Method: SW3546

Analytical Method: TBT (Hexyl) Krone 1988 Log Number Range: 08-32709 to 08-32712

Page 1 of 1

Sample ID: COMP A-U SAMPLE

Lab Sample ID: OC80A LIMS ID: 08-32709 Matrix: Sediment

Data Release Authorized:

Date Extracted: 12/09/08

Silica Gel Cleanup: No

Date Analyzed: 12/11/08 17:37

Instrument/Analyst: NT2/VTS

Reported: 12/15/08

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 5.55 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00

> Alumina Cleanup: Yes Moisture: 15.1%

CAS Number	Analyte	RL	Result	Q
TBT_ION	Tributyltin Ion Dibutyltin Ion	3.5 5.2	< 3.5 16	U
BT_ION	Butyltin Ion	3.7	5.5	

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	103%
Tripentyl	Tin	Chloride	226%

Sample ID: COMP A-L SAMPLE

Lab Sample ID: OC80B LIMS ID: 08-32710

Matrix: Sediment
Data Release Authorized:

Date Extracted: 12/09/08
Date Analyzed: 12/11/08 17:56

Instrument/Analyst: NT2/VTS
Silica Gel Cleanup: No

Reported: 12/15/08

B

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 5.61 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

Moisture: 12.8%

CAS Number	Analyte	RL	Result	Q
TBT_ION	Tributyltin Ion	3.4	< 3.4	U
DBT_ION BT_ION	Dibutyltin Ion Butyltin Ion	5.2 3.6	15 4.8	

Reported in $\mu g/kg$ (ppb)

TBT Surrogate Recovery

Tripropyl Tin Chloride 84.1% Tripentyl Tin Chloride 92.8%

Page 1 of 1

Sample ID: COMP B-U SAMPLE

Lab Sample ID: OC80C LIMS ID: 08-32711

Matrix: Sediment

Data Release Authorized: Reported: 12/15/08

Date Extracted: 12/09/08

Silica Gel Cleanup: No

Date Analyzed: 12/11/08 18:16

Instrument/Analyst: NT2/VTS

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 5.40 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

Moisture: 13.7%

CAS Number	Analyte	RL	Result	_
TBT_ION	Tributyltin Ion	3.6	< 3.6	υ
DBT_ION	Dibutyltin Ion	5.4	13	
BT_ION	Butyltin Ion	3.8	< 3.8	U

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	102%
Tripentyl	Tin	Chloride	106%

Sample ID: COMP B-L

SAMPLE

Lab Sample ID: OC80D LIMS ID: 08-32712

QC Report No: OC80-Newfields Northwest

Matrix: Sediment

Project: MARINA PARK Event: NA

Data Release Authorized: Reported: 12/15/08

Date Sampled: 11/26/08 Date Received: 12/05/08

Date Extracted: 12/09/08

Sample Amount: 5.47 g-dry-wt

Date Analyzed: 12/11/08 18:35 Instrument/Analyst: NT2/VTS

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

Silica Gel Cleanup: No

Moisture: 15.7%

CAS Number	Analyte	RL	Result	Õ
TBT ION	Tributyltin Ion	3.5	< 3.5	U
DBT_ION	Dibutyltin Ion	5.3	19	
BT_ION	Butyltin Ion	3.7	6.1	

Reported in $\mu g/kg$ (ppb)

_				
	Tripropyl	Tin	Chloride	101%
	Tripentyl			185%

Sample ID: COMP B-L MATRIX SPIKE

Lab Sample ID: OC80D LIMS ID: 08-32712 QC Report No: OC80-Newfields Northwest

LIMS ID: 08-32712 Matrix: Sediment

Reported: 12/15/08

Project: MARINA PARK

Data Release Authorized: /

Date Sampled: 11/26/08 Date Received: 12/05/08

Date Extracted MS: 12/09/08

Sample Amount MS: 5.21 g-dry-wt

Date Analyzed MS: 12/11/08 18:55

MSD: 5.29 g-dry-wt Final Extract Volume MS: 0.5 mL

MSD: 12/11/08 19:14

MSD: 0.5 mL

Instrument/Analyst MS: NT2/VTS

Dilution Factor MS: 1.00

MSD: NT2/VTS

MSD: 1.00

Silica Gel Cleanup: No

Alumina Cleanup: Yes Moisture: 15.7%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD .	
Tributyltin Ion	< 3.5 U	35.6	42.8	83.2%	36.7	42.1	87.2%	3.0%	
Dibutyltin Ion	18.8	40.6	36.8	59.2%	55.3	36.2	101%	30.7%	
Butyltin Ion	6.1	21.6	29.9	51.8%	27.4	29.4	72.4%	23.7%	

Results reported in $\mu g/kg$

RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: OC80D LIMS ID: 08-32712 Matrix: Sediment

Data Release Authorized:

Reported: 12/15/08

Date Extracted: 12/09/08 Date Analyzed: 12/11/08 18:55 Instrument/Analyst: NT2/VTS Silica Gel Cleanup: No Sample ID: COMP B-L

MATRIX SPIKE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 5.21 g-dry-wt

Final Extract Volume: 0.50 mL

Dilution Factor: 1.00 Alumina Cleanup: Yes Moisture: 15.7%

CAS Number	Analyte	RĿ	Result Ç	ð
TBT_ION	Tributyltin Ion	3.7		
DBT_ION	Dibutyltin Ion	5.6		
BT_ION	Butyltin Ion	3.9		

Reported in $\mu g/kg$ (ppb)

TBT Surrogate Recovery

Tripropyl Tin Chloride 96.0% Tripentyl Tin Chloride 102%

Sample ID: COMP B-L

MATRIX SPIKE DUP

Lab Sample ID: OC80D LIMS ID: 08-32712

QC Report No: OC80-Newfields Northwest Project: MARINA PARK

Matrix: Sediment

Data Release Authorized:

Event: NA

Reported: 12/15/08

Date Sampled: 11/26/08 Date Received: 12/05/08

Date Extracted: 12/09/08 Date Analyzed: 12/11/08 19:14

Sample Amount: 5.29 g-dry-wt Final Extract Volume: 0.50 mL

Instrument/Analyst: NT2/VTS

Dilution Factor: 1.00 Alumina Cleanup: Yes

Silica Gel Cleanup: No

Moisture: 15.7%

CAS Number	Analyte	RL	Result	Q
TBT_ION DBT_ION BT_ION	Tributyltin Ion Dibutyltin Ion Butyltin Ion	3.7 5.5 3.9	 	

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	97.3%
Tripentyl	Tin	Chloride	106%

Sample ID: MB-120908

METHOD BLANK

Lab Sample ID: MB-120908

LIMS ID: 08-32712 Matrix: Sediment

Data Release Authorized:

Date Extracted: 12/09/08
Date Analyzed: 12/11/08 16:58

Silica Gel Cleanup: No

Instrument/Analyst: NT2/VTS

Reported: 12/15/08

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

CAS Number	Analyte	RL	Result	Q
TBT ION	Tributyltin Ion	3.9	< 3.9	U
DBT_ION	Dibutyltin Ion	5.8	< 5.8	U
BT_ION	Butyltin Ion	4.1	< 4.1	U

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	83.9%
Tripentyl	Tin	Chloride	170%

Sample ID: LCS-120908

LAB CONTROL SAMPLE

Lab Sample ID: LCS-120908

LIMS ID: 08-32712 Matrix: Sediment

Data Release Authorized:

Silica Gel Cleanup: No

Instrument/Analyst LCS: NT2/VTS

Reported: 12/15/08

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

Date Extracted LCS: 12/09/08
Date Analyzed LCS: 12/11/08 17:18

Sample Amount LCS: 5.00 g-dry-wt

Final Extract Volume LCS: 0.50 mL Dilution Factor LCS: 1.00

Alumina Cleanup: Yes

Analyte	LCS	Spike Added	Recovery
Tributyltin Ion	35.8	44.6	80.3%
Dibutyltin Ion	26.7	38.4	69.5%
Butyltin Ion	23.7	31.2	76.0%

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	94.6%
Tripentyl	Tin	Chloride	268%

PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: COMP A-U SAMPLE

Lab Sample ID: OC80A LIMS ID: 08-32709

Matrix: Sediment

Date Sampled: 11/26/08

Data Release Authorized: Reported: 12/11/08

Date Received: 12/05/08

Project: MARINA PARK

Date Extracted: 12/09/08 Date Analyzed: 12/10/08 14:57 Instrument/Analyst: ECD5/JGR

Sample Amount: 25.6 g-dry-wt Final Extract Volume: 5.0 mL

QC Report No: OC80-Newfields Northwest

GPC Cleanup: No

Dilution Factor: 1.00 Silica Gel: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	85.2%
Tetrachlorometaxylene	89.2%

Page 1 of 1

Sample ID: MB-120908

METHOD BLANK

Lab Sample ID: MB-120908

LIMS ID: 08-32710 Matrix: Sediment

Data Release Authorized:

Reported: 12/11/08

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: NA

Date Extracted: 12/09/08 Date Analyzed: 12/10/08 14:05 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	84.8%
Tetrachlorometaxylene	85.5%

Page 1 of 1

Sample ID: COMP A-L SAMPLE

Lab Sample ID: OC80B LIMS ID: 08-32710

Matrix: Sediment

Data Release Authorized:

Reported: 12/11/08

Date Extracted: 12/09/08
Date Analyzed: 12/10/08 15:14
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 12.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 Ŭ

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	78.0%
Tetrachlorometaxylene	81.5%

Page 1 of 1

Lab Sample ID: OC80B LIMS ID: 08-32710

Matrix: Sediment

Data Release Authorized:

Reported: 12/11/08

Date Extracted: 12/09/08
Date Analyzed: 12/10/08 15:31
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: COMP A-L

MATRIX SPIKE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.3 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 12.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	-
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	85.5%
Tetrachlorometaxylene	86.8%

Page 1 of 1

Sample ID: COMP A-L MATRIX SPIKE DUP

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 12.8%

Date Extracted: 12/09/08 Date Analyzed: 12/10/08 15:48 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes

Lab Sample ID: OC80B

Data Release Authorized:

LIMS ID: 08-32710 Matrix: Sediment

Reported: 12/11/08

Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	
53469-21-9	Aroclor 1242	20	< 20 Ŭ
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	84.0%
Tetrachlorometaxylene	86.8%

Page 1 of 1

Sample ID: COMP B-U SAMPLE

Lab Sample ID: OC80C LIMS ID: 08-32711

Matrix: Sediment

Data Release Authorized: \\ \

Reported: 12/11/08

Date Extracted: 12/09/08 Date Analyzed: 12/10/08 16:05 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.1 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 13.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	83.5%
Tetrachlorometaxylene	86.0%

Page 1 of 1

Lab Sample ID: OC80D LIMS ID: 08-32712

Matrix: Sediment

Data Release Authorized:

Reported: 12/11/08

Date Extracted: 12/09/08
Date Analyzed: 12/10/08 16:23
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: COMP B-L

SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 15.7%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	84.2%
Tetrachlorometaxylene	88.0%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

QC Report No: OC80-Newfields Northwest Project: MARINA PARK Matrix: Sediment

Client ID	DCBP % REC	DCBP	TCMX % REC	TCMX LCL-UCL	TOT OUT
COMP A-U	85.2%	43-148	89.2%	48-123	0
MB-120908	84.8%	65-117	85.5%	63-119	0
LCS-120908	86.5%	65-117	82.5%	63-119	0
COMP A-L	78.0%	43-148	81.5%	48-123	0
COMP A-L MS	85.5%	43-148	86.8%	48-123	0
COMP A-L MSD	84.0%	43-148	86.8%	48-123	0
COMP B-U	83.5%	43-148	86.0%	48-123	0
COMP B-L	84.2%	43-148	88.0%	48-123	0

PSDDA Control Limits

Prep Method: SW3550B Log Number Range: 08-32709 to 08-32712

Page 1 of 1

Sample ID: COMP A-L

MS/MSD

Lab Sample ID: OC80B LIMS ID: 08-32710

QC Report No: OC80-Newfields Northwest

Matrix: Sediment

Project: MARINA PARK

Data Release Authorized: \

Date Sampled: 11/26/08

Reported: 12/11/08

Date Received: 12/05/08

Date Extracted MS/MSD: 12/09/08

Sample Amount MS: 25.3 g-dry-wt

MSD: 25.4 g-dry-wt

Date Analyzed MS: 12/10/08 15:31

Final Extract Volume MS: 5.0 mL

MSD: 12/10/08 15:48

MSD: 5.0 mL

Instrument/Analyst MS: ECD5/JGR MSD: ECD5/JGR

Dilution Factor MS: 1.00 MSD: 1.00

GPC Cleanup: No Sulfur Cleanup: Yes Silica Gel: No

Acid Cleanup: Yes Florisil Cleanup: No

Percent Moisture: 12.8%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Aroclor 1016 Aroclor 1260	< 19.7 U < 19.7 U	86.6	98.8 98.8	87.7% 95.5%	87.7 93.4	98.3 98.3	89.2% 95.0%	1.3%

Results reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

PSDDA PCB by GC/ECD

Page 1 of 1

Sample ID: LCS-120908

LAB CONTROL

Lab Sample ID: LCS-120908

LIMS ID: 08-32710 Matrix: Sediment

Data Release Authorized:

Reported: 12/11/08

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: NA

Date Extracted: 12/09/08
Date Analyzed: 12/10/08 14:22
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Analyte	Lab Control	Spike Added	Recovery
Aroclor 1016	84.9	100	84.9%
Aroclor 1260	100	100	100%

Decachlorobiphenyl 86.5% Tetrachlorometaxylene 82.5%

Results reported in $\mu g/kg$ (ppb)

SW8081 PESTICIDE SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Client ID	DCBP	TCMX	TOT OUT
COMP A-U	78.5%	78.5%	0
COMP A-L	79.2%	77.5%	0
MB-120908	79.8%	78.5%	0
LCS-120908	79.5%	84.0%	0
COMP B-U	80.5%	80.8%	0
COMP B-U MS	78.2%	84.5%	0
COMP B-U MSD	88.0%	85.2%	0
COMP B-L	79.8%	82.8%	0

	LCS/MB LIMITS	QC LIMITS
 <pre>= Decachlorobiphenyl = Tetrachlorometaxylene</pre>	(65-125) (53-112)	(52-143) (43-128)

Prep Method: SW3550B

Log Number Range: 08-32709 to 08-32712

1 of 1 Page

Lab Sample ID: OC80A LIMS ID: 08-32709

Matrix: Sediment

Data Release Authorized:

Reported: 12/12/08

Date Extracted: 12/09/08 Date Analyzed: 12/11/08 11:55 Instrument/Analyst: ECD4/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

Sample ID: COMP A-U SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.97	< 0.97 U
319-85-7	beta-BHC	0.97	< 0.97 U
319-86-8	delta-BHC	0.97	< 0.97 U
58-89-9	gamma-BHC (Lindane)	0.97	< 0.97 U
76-44-8	Heptachlor	0.97	< 0.97 U
309-00-2	Aldrin	0.97	< 0.97 U
1024-57-3	Heptachlor Epoxide	0.97	< 0.97 U
959-98-8	Endosulfan I	0.97	< 0.97 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4 , 4 ¹ -DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	9.7	< 9.7 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.97	< 0.97 U
5103-71 - 9	alpha Chlordane	0.97	< 0.97 U
8001-35-2	Toxaphene	97	< 97 บั
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	78.5%
Tetrachlorometaxylene	78.5%

Page 1 of 1

Lab Sample ID: OC80B LIMS ID: 08-32710

Matrix: Sediment

Data Release Authorized:

Reported: 12/12/08

Date Extracted: 12/09/08 Date Analyzed: 12/11/08 12:15 Instrument/Analyst: ECD4/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

Sample ID: COMP A-L SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 12.8%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.98	< 0.98 U
319-85-7	beta-BHC	0.98	< 0.98 U
319-86-8	delta-BHC	0.98	< 0.98 U
58-89-9	gamma-BHC (Lindane)	0.98	< 0.98 U
76-44-8	Heptachlor	0.98	< 0.98 U
309-00-2	Aldrin	0.98	< 0.98 U
1024-57-3	Heptachlor Epoxide	0.98	< 0.98 U
959-98 - 8	Endosulfan I	0.98	< 0.98 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54 - 8	4,4 * -DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	9.8	< 9.8 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.98	< 0.98 U
5103-71-9	alpha Chlordane	0.98	< 0.98 U
8001-35-2	Toxaphene	98	< 98 U
789-02 - 6	2,4'-DDT	2.0	< 2.0 U
3424-82-6		2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	79.2%
Tetrachlorometaxylene	77.5%

Page 1 of 1

Lab Sample ID: OC80C LIMS ID: 08-32711

Matrix: Sediment
Data Release Authorized:

Reported: 12/12/08

Date Extracted: 12/09/08 Date Analyzed: 12/11/08 12:35 Instrument/Analyst: ECD4/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: COMP B-U SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 5.0 mL
Dilution Factor: 1.00
Silica Gel: Yes

Percent Moisture: 13.7%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.99	< 0.99 U
319-85-7	beta-BHC	0.99	< 0.99 U
319-86-8	delta-BHC	0.99	< 0.99 Ü
58-89-9	gamma-BHC (Lindane)	0.99	< 0.99 U
76-44-8	Heptachlor	0.99	< 0.99 U
309-00-2	Aldrin	0.99	< 0.99 U
1024-57-3	Heptachlor Epoxide	0.99	< 0.99 U
959-98-8	Endosulfan I	0.99	< 0.99 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	9.9	< 9.9 ปั
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.99	< 0.99 U
5103-71-9	alpha Chlordane	0.99	< 0.99 U
8001-35-2	Toxaphene	99	< 99 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	80.5%
Tetrachlorometaxylene	80.8%

Page 1 of 1

Sample ID: COMP B-L SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Date Extracted: 12/09/08 Sample Amount: 25.5 g-dry-wt

Date Analyzed: 12/11/08 14:21 Final Extract Volume: 5.0 mL Instrument/Analyst: ECD4/AAR Dilution Factor: 1.00 Silica Gel: Yes

GPC Cleanup: No Sulfur Cleanup: Yes

Lab Sample ID: OC80D

Data Release Authorized:

LIMS ID: 08-32712

Reported: 12/12/08

Matrix: Sediment

Florisil Cleanup: No

Acid Cleanup: No

Percent Moisture: 15.7%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.98	< 0.98 U
319-85-7	beta-BHC	0.98	< 0.98 U
319-86-8	delta-BHC	0.98	< 0.98 U
58-89-9	gamma-BHC (Lindane)	0.98	< 0.98 U
76-44-8	Heptachlor	0.98	< 0.98 U
309-00-2	Aldrin	0.98.	< 0.98 U
1024-57-3	Heptachlor Epoxide	0.98	< 0.98 บั
959-98-8	Endosulfan I	0.98	< 0.98 ປັ
60-57-1	Dieldrin	2.0	< 2.0 Ü
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 Ŭ
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	9.8	< 9.8 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.98	< 0.98 U
5103-71-9	alpha Chlordane	0.98	< 0.98 Ü
8001-35-2	Toxaphene	98	< 98 Ü
789-02-6	2,4'-DDT	2.0	< 2.0 Ü
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	79.8%
Tetrachlorometaxylene	82.8%

Page 1 of 1

Sample ID: COMP B-U MS/MSD

Lab Sample ID: OC80C LIMS ID: 08-32711

Matrix: Sediment Data Release Authorized:

Reported: 12/12/08

Date Extracted MS/MSD: 12/09/08

Date Analyzed MS: 12/11/08 13:41 MSD: 12/11/08 14:01

Instrument/Analyst MS: ECD4/AAR MSD: ECD4/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount MS: 25.2 g-dry-wt

MSD: 25.0 g-dry-wt

Final Extract Volume MS: 5.0 mL MSD: 5.0 mL

Dilution Factor MS: 1.00

MSD: 1.00 Silica Gel: Yes

Percent Moisture: 13.7%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
alpha-BHC	< 0.991	3.38	3.97	85.1%	3.59	3.99	90.0%	6.0%
beta-BHC	< 0.991	3.64	3.97	91.7%	3.97	3.99	99.5%	8.7%
delta-BHC	< 0.991	3.12	3.97	78.6%	3.77	3.99	94.5%	18.9%
gamma-BHC (Lindane)	< 0.991	3.38	3.97	85.1%	3.69	3.99	92.5%	8.8%
Heptachlor	< 0.991	3.30	3.97	83.1%	3.93	3.99	98.5%	17.4%
Aldrin	< 0.991	3.24	3.97	81.6%	3.87	3.99	97.0%	17.7%
Heptachlor Epoxide	< 0.991	3.54	3.97	89.2%	4.07	3.99	102%	13.9%
Endosulfan I	< 0.991	3.40	3.97	85.6%	3.79	3.99	95.0%	10.8%
Dieldrin	< 1.98	7.17	7.95	90.2%	7.80	7.98	97.7%	8.4%
4,4'-DDE	< 1.98	7.49	7.95	94.2%	8.14	7.98	102%	8.3%
Endrin	< 1.98	6.83	7.95	85.9%	7.35	7.98	92.1%	7.3%
Endosulfan II	< 1.98	6.95	7.95	87.4%	7.41	7.98	92.9%	6.4%
4,4'-DDD	< 1.98	6.79	7.95	85.4%	7.19	7.98	90.1%	5.7%
Endosulfan Sulfate	< 1.98	5.54	7.95	69.7%	6.17	7.98	77.3%	10.8%
4,4'-DDT	< 1.98	7.13	7.95	89.7%	7.60	7.98	95.2%	6.4%
Methoxychlor	< 9.91	32.8	39.7	82.6%	35.7	39.9	89.5%	8.5%
Endrin Aldehyde	< 1.98	5.38	7.95	67.7%	5.43	7.98	68.0%	0.9%
gamma Chlordane	< 0.991	3.54	3.97	89.2%	3.93	3.99	98.5%	10.4%
alpha Chlordane	< 0.991	3.36	3.97	84.6%	3.69	3.99	92.5%	9.4%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

Page 1 of 1

Lab Sample ID: OC80C LIMS ID: 08-32711 Matrix: Sediment

Data Release Authorized: Reported: 12/12/08

Date Extracted: 12/09/08 Date Analyzed: 12/11/08 13:41 Instrument/Analyst: ECD4/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

Sample ID: COMP B-U MATRIX SPIKE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 13.7%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.99	
319-85-7	beta-BHC	0.99	
319-86-8	delta-BHC	0.99	
58-89-9	gamma-BHC (Lindane)	0.99	
76-4 4- 8	Heptachlor	0.99	
309-00-2	Aldrin	0.99	
1024-57-3	Heptachlor Epoxide	0.99	
959-98-8	Endosulfan I	0.99	
60-57-1	Dieldrin	2.0	
72-55-9	4,4'-DDE	2.0	
72-20-8	Endrin	2.0	
33213-65-9	Endosulfan II	2.0	
72-5 4- 8	4,4'-DDD	2.0	
1031-07-8	Endosulfan Sulfate	2.0	
50-29-3	4,4'-DDT	2.0	
72-43-5	Methoxychlor	9.9	
7421-93-4	Endrin Aldehyde	2.0	-
5103-74-2	gamma Chlordane	0.99	-
5103-71-9	alpha Chlordane	0.99	
8001-35-2	Toxaphene	99	< 99 U
789-02-6	2,4 [†] -DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	78.2%
Tetrachlorometaxylene	84.5%

Sample ID: COMP B-U

MATRIX SPIKE DUP

Lab Sample ID: OC80C

OC Report No: OC80-Newfields Northwest

LIMS ID: 08-32711

Project: MARINA PARK

Matrix: Sediment

Date Sampled: 11/26/08

Data Release Authorized: Reported: 12/12/08

Date Received: 12/05/08

Date Extracted: 12/09/08 Date Analyzed: 12/11/08 14:01

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL

Instrument/Analyst: ECD4/AAR

Dilution Factor: 1.00

GPC Cleanup: No

Silica Gel: Yes

Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No

Percent Moisture: 13.7%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	1.0	
319-85-7	beta-BHC	1.0	
319-86-8	delta-BHC	1.0	
58-89-9	gamma-BHC (Lindane)	1.0	
76-44-8	Heptachlor	1.0	
309-00-2	Aldrin	1.0	
1024-57-3	Heptachlor Epoxide	1.0	
959-98-8	Endosulfan I	1.0	
60-57-1	Dieldrin	2.0	
72-55-9	4,4'-DDE	2.0	
72-20-8	Endrin	2.0	
33213-65-9	Endosulfan II	2.0	
72-54-8	4,4'-DDD	2.0	
1031-07-8	Endosulfan Sulfate	2.0	
50-29-3	4,4'-DDT	2.0	
72-43-5	Methoxychlor	10	
7421-93-4	Endrin Aldehyde	2.0	
5103-74-2	gamma Chlordane	1.0	
5103-71-9	alpha Chlordane	1.0	
3001-35-2	Toxaphene	100	< 100 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	88.0%
Tetrachlorometaxylene	85.2%

Page 1 of 1

Lab Sample ID: MB-120908

LIMS ID: 08-32711 Matrix: Sediment

Data Release Authorized:

Reported: 12/12/08

Date Extracted: 12/09/08 Date Analyzed: 12/11/08 11:14 Instrument/Analyst: ECD4/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: MB-120908

METHOD BLANK

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: NA

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	1.0	< 1.0 U
319-85-7	beta-BHC	1.0	< 1.0 U
319-86-8	delta-BHC	1.0	< 1.0 U
58-89-9	gamma-BHC (Lindane)	1.0	< 1.0 U
76-44-8	Heptachlor	1.0	< 1.0 U
309-00-2	Aldrin	1.0	< 1.0 U
1024-57-3	Heptachlor Epoxide	1.0	< 1.0 U
959-98-8	Endosulfan I	1.0	< 1.0 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	10	< 10 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	1.0	< 1.0 U
5103-71-9	alpha Chlordane	1.0	< 1.0 U
8001-35-2	Toxaphene	100	< 100 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	79.8%
Tetrachlorometaxylene	78.5%

Page 1 of 1

LIMS ID: 08-32711

Reported: 12/12/08

Matrix: Sediment

Sample ID: LCS-120908 LAB CONTROL

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.0 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: NA

Date Extracted: 12/09/08 Date Analyzed: 12/11/08 11:35

Lab Sample ID: LCS-120908

Data Release Authorized;

Instrument/Analyst: ECD4/AAR GPC Cleanup: No

Sulfur Cleanup: Yes Florisil Cleanup: No

Analyte	Lab Control	Spike Added	Recovery
alpha-BHC	3.48	4.00	87.0%
beta-BHC	3.70	4.00	92.5%
delta-BHC	3.62	4.00	90.5%
gamma-BHC (Lindane)	3.66	4.00	91.5%
Heptachlor	3.80	4.00	95.0%
Aldrin	3.82	4.00	95.5%
Heptachlor Epoxide	3.92	4.00	98.0%
Endosulfan I	3.74	4.00	93.5%
Dieldrin	7.64	8.00	95.5%
4,4'-DDE	7.98	8.00	99.8%
Endrin	7.16	8.00	89.5%
Endosulfan II	7.06	8.00	88.2%
4,4'-DDD	6.90	8.00	86.2%
Endosulfan Sulfate	5.86	8.00	73.2%
4,4'-DDT	7.28	8.00	91.0%
Methoxychlor	34.4	40.0	86.0%
Endrin Aldehyde	4.98	8.00	62.2%
gamma Chlordane	3.82	4.00	95.5%
alpha Chlordane	3.68	4.00	92.0%

Pest/PCB Surrogate Recovery

Decachlorobiphenyl	79.5%
Tetrachlorometaxylene	84.0%

Reported in $\mu g/kg$ (ppb)

SIM SW8270 SURROGATE RECOVERY SUMMARY

QC Report No: OC80-Newfields Northwest Project: MARINA PARK Matrix: Sediment

MNP	DBA	TOT OUT
	•	
58.3%	81.0%	0
62.0%	83.0%	0
58.3%	83.3%	0
62.3%	78.3%	0
63.0%	79.7%	0
59.7%	75.7%	0
58.7%	76.3%	0
58.7%	74.0%	0
	58.3% 62.0% 58.3% 62.3% 63.0% 59.7% 58.7%	58.3% 81.0% 62.0% 83.0% 58.3% 83.3% 62.3% 78.3% 63.0% 79.7% 59.7% 75.7% 58.7% 76.3% 58.7% 74.0%

	LCS/MB LIMITS	QC LIMITS
 d10-2-Methylnaphthalene	(44-100)	(37-106)
d14-Dibenzo(a,h)anthracene	(46-121)	(16-118)

Prep Method: SW3546 Log Number Range: 08-32709 to 08-32712

Page 1 of 1

Lab Sample ID: OC80A LIMS ID: 08-32709

Matrix: Sediment

Data Release Authorized:

Reported: 12/12/08

Date Extracted: 12/09/08 Date Analyzed: 12/12/08 12:03

Instrument/Analyst: NT1/YZ

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No

Sample ID: COMP A-U SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 10.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	4.9	< 4.9 U
86-73-7	Fluorene	4.9	< 4.9 U
85-01-8	Phenanthrene	4.9	< 4.9 U
120-12-7	Anthracene	4.9	< 4.9 U
206-44-0	Fluoranthene	4.9	< 4.9 U
129-00-0	Pyrene	4.9	< 4.9 U
56-55-3	Benzo(a)anthracene	4.9	< 4.9 U
218-01-9	Chrysene	4.9	< 4.9 U
205-99-2	Benzo(b) fluoranthene	4.9	< 4.9 U
50-32-8	Benzo(a)pyrene	4.9	< 4.9 U
193-39-5	Indeno(1,2,3-cd)pyrene	4.9	< 4.9 U
53-70-3	Dibenz(a,h)anthracene	4.9	< 4.9 U
191-24-2	Benzo(g,h,i)perylene	4.9	< 4.9 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 58.3% d14-Dibenzo(a,h)anthracen 83.3%

Sample ID: COMP A-L SAMPLE

QC Report No: OC80-Newfields Northwest

Lab Sample ID: OC80B LIMS ID: 08-32710

Matrix: Sediment

Data Release Authorized: Reported: 12/12/08

B

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 10.7 g-dry-wt

Project: MARINA PARK

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 12.8%

Event: NA

Date Extracted: 12/09/08
Date Analyzed: 12/12/08 13:18
Instrument/Analyst: NT1/YZ
GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No

CAS Number	Analyte	RI.	Result
83-32-9	Acenaphthene	4.7	< 4.7 U
86-73-7	Fluorene	4.7	< 4.7 Ü
85-01-8	Phenanthrene	4.7	< 4.7 Ü
120-12-7	Anthracene	4.7	< 4.7 U
206-44-0	Fluoranthene	4.7	< 4.7 U
129-00-0	Pyrene	4.7	< 4.7 U
56-55-3	Benzo(a) anthracene	4.7	< 4.7 Ŭ
218-01-9	Chrysene	4.7	< 4.7 U
205-99-2	Benzo(b) fluoranthene	4.7	< 4.7 U
50-32-8	Benzo(a)pyrene	4.7	< 4.7 U
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	< 4.7 U
53-70-3	Dibenz(a,h)anthracene	4.7	< 4.7 U
191-24-2	Benzo(g,h,i)perylene	4.7	< 4.7 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 59.7% d14-Dibenzo(a,h)anthracen 75.7%

Lab Sample ID: OC80C

LIMS ID: 08-32711 Matrix: Sediment

Data Release Authorized:

Reported: 12/12/08

Date Extracted: 12/09/08
Date Analyzed: 12/12/08 13:42
Instrument/Analyst: NT1/YZ

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No Sample ID: COMP B-U SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 10.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 13.7%

CAS Number	Analyte	RĿ	Result
83-32-9	Acenaphthene	4.8	< 4.8 U
86-73-7	Fluorene	4.8	< 4.8 U
85-01-8	Phenanthrene	4.8	< 4.8 U
120-12-7	Anthracene	4.8	< 4.8 U
206-44-0	Fluoranthene	4.8	< 4.8 U
129-00-0	Pyrene	4.8	< 4.8 U
56-55-3	Benzo(a) anthracene	4.8	< 4.8 U
218-01-9	Chrysene	4.8	5.8
205-99-2	Benzo(b) fluoranthene	4.8	4.8
50-32-8	Benzo(a)pyrene	4.8	4.8
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	7.7
53-70-3	Dibenz(a,h)anthracene	4.8	< 4.8 Ü
191-24-2	Benzo(g,h,i)perylene	4.8	9.6

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 58.7% d14-Dibenzo(a,h)anthracen 76.3%

Sample ID: COMP B-L SAMPLE

Sample Amount: 10.2 g-dry-wt

QC Report No: OC80-Newfields Northwest

Lab Sample ID: OC80D LIMS ID: 08-32712

LIMS ID: 08-32712 Matrix: Sediment Project: MARINA PARK Event: NA

Data Release Authorized:

Date Sampled: 11/26/08 Date Received: 12/05/08

Reported: 12/12/08

10001.00. 12,00,00

Date Extracted: 12/09/08
Date Analyzed: 12/12/08 14:07
Instrument/Analyst: NT1/YZ

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.7%

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	4.9	< 4.9 U
86-73-7	Fluorene	4.9	< 4.9 U
85-01-8	Phenanthrene	4.9	< 4.9 U
120-12-7	Anthracene	4.9	< 4.9 U
206-44-0	Fluoranthene	4.9	< 4.9 U
129-00-0	Pyrene	4.9	< 4.9 U
56-55-3	Benzo(a) anthracene	4.9	< 4.9 U
218-01-9	Chrysene	4.9	< 4.9 U
205-99-2	Benzo(b) fluoranthene	4.9	< 4.9 U
50-32-8	Benzo(a)pyrene	4.9	< 4.9 U
193-39-5	Indeno(1,2,3-cd)pyrene	4.9	< 4.9 Ŭ
53-70-3	Dibenz(a,h)anthracene	4.9	< 4.9 Ü
191-24-2	Benzo(g,h,i)perylene	4.9	< 4.9 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 58.7% d14-Dibenzo(a,h)anthracen 74.0%

Page 1 of 1

Lab Sample ID: OC80A

Data Release Authorized://

LIMS ID: 08-32709 Matrix: Sediment

Reported: 12/12/08

Sample ID: COMP A-U MATRIX SPIKE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Date Extracted MS/MSD: 12/09/08

Sample Amount MS: 10.3 g-dry-wt MSD: 10.5 g-dry-wt

Date Analyzed MS: 12/12/08 12:28

Final Extract Volume MS: 0.50 mL

MSD: 12/12/08 12:53

MSD: 0.50 mL

Instrument/Analyst MS: NT1/YZ

Dilution Factor MS: 1.00

MSD: NT1/YZ

MSD: 1.00

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Acenaphthene	< 4.9 U	86.9	146	59.5%	89.0	143	62.2%	2.4%
Fluorene	< 4.9 Ü	88.3	146	60.5%	91.9	143	64.3%	4.0%
Phenanthrene	< 4.9 U	93.2	146	63.8%	92.4	143	64.6%	0.9%
Anthracene	< 4.9 U	95.1	146	65.1%	93.3	143	65.2%	1.9%
Fluoranthene	< 4.9 U	105	146	71.9%	105	143	73.4%	0.0%
Pyrene	< 4.9 U	106	146	72.6%	105	143	73.4%	0.9%
Benzo(a)anthracene	< 4.9 U	100	146	68.5%	98.1	143	68.6%	1.9%
Chrysene	< 4.9 U	99.0	146	67.8%	99.0	143	69.2%	0.0%
Benzo(b) fluoranthene	< 4.9 U	89.3	146	61.2%	95.2	143	66.6%	6.4%
Benzo(a) pyrene	< 4.9 U	107	146	73.3%	107	143	74.8%	0.0%
Indeno(1,2,3-cd)pyrene	< 4.9 U	100	146	68.5%	101	143	70.6%	1.0%
Dibenz (a, h) anthracene	< 4.9 U	103	146	70.5%	102	143	71.3%	1.0%
Benzo(g,h,i)perylene	< 4.9 U	102	146	69.9%	100	143	69.9%	2.0%

Reported in $\mu g/kg$ (ppb)

RPD calculated using sample concentrations per SW846.

Sample ID: COMP A-U MATRIX SPIKE

Lab Sample ID: OC80A LIMS ID: 08-32709

QC Report No: OC80-Newfields Northwest

Matrix: Sediment

Reported: 12/12/08

Project: MARINA PARK

Data Release Authorized:

Event: NA Date Sampled: 11/26/08 Date Received: 12/05/08

Date Extracted: 12/09/08

Sample Amount: 10.3 g-dry-wt

Date Analyzed: 12/12/08 12:28 Instrument/Analyst: NT1/YZ

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	4.8	
86-73-7	Fluorene	4.8	
85-01-8	Phenanthrene	4.8	
120-12-7	Anthracene	4.8	
206-44-0	Fluoranthene	4.8	
129-00-0	Pyrene	4.8	
56-55-3	Benzo(a) anthracene	4.8	
218-01-9	Chrysene	4.8	
205-99-2	Benzo(b) fluoranthene	4.8	
50-32-8	Benzo(a)pyrene	4.8	
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	
53-70-3	Dibenz (a, h) anthracene	4.8	
191-24-2	Benzo(g,h,i)perylene	4.8	

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 62.3% d14-Dibenzo(a,h)anthracen 78.3%

Page 1 of 1

Sample ID: COMP A-U

MATRIX SPIKE DUPLICATE

Lab Sample ID: OC80A LIMS ID: 08-32709

Matrix: Sediment

Data Release Authorized: Reported: 12/12/08

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 10.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Percent Moisture: 15.1%

Date Extracted: 12/09/08 Date Analyzed: 12/12/08 12:53 Instrument/Analyst: NT1/YZ

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No

CAS Number	Analyte	RĿ	Result
83-32-9	Acenaphthene	4.8	
86-73-7	Fluorene	4.8	
85-01-8	Phenanthrene	4.8	
120-12-7	Anthracene	4.8	
206-44-0	Fluoranthene	4.8	
129-00-0	Pyrene	4.8	
56-55-3	Benzo(a) anthracene	4.8	
218-01-9	Chrysene	4.8	
205-99-2	Benzo(b) fluoranthene	4.8	
50-32-8	Benzo(a) pyrene	4.8	
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	
53-70-3	Dibenz(a,h)anthracene	4.8	-
191-24-2	Benzo(g,h,i)perylene	4.8	

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 63.0% d14-Dibenzo(a,h)anthracen 79.7%

Sample ID: MB-120908 METHOD BLANK

Lab Sample ID: MB-120908

LIMS ID: 08-32709

Matrix: Sediment Data Release Authorized:

Reported: 12/12/08

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

Date Extracted: 12/09/08 Date Analyzed: 12/12/08 11:14 Instrument/Analyst: NT1/YZ

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	5.0	< 5.0 U
86-73-7	Fluorene	5.0	< 5.0 U
85-01-8	Phenanthrene	5.0	< 5.0 U
120-12-7	Anthracene	5.0	< 5.0 U
206-44-0	Fluoranthene	5.0	< 5.0 U
129-00-0	Pyrene	5.0	< 5.0 U
56-55 - 3	Benzo(a)anthracene	5.0	< 5.0 Ŭ
218-01-9	Chrysene	5.0	< 5.0 U
205-99-2	Benzo(b)fluoranthene	5.0	< 5.0 U
50-32-8	Benzo(a)pyrene	5.0	< 5.0 U
193-39-5	Indeno(1,2,3-cd)pyrene	5.0	< 5.0 U
53-70-3	Dibenz (a, h) anthracene	5.0	< 5.0 U
191-24-2	Benzo(g,h,i)perylene	5.0	< 5.0 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 58.3% d14-Dibenzo(a,h)anthracen 81.0%

Sample ID: LCS-120908

LAB CONTROL SAMPLE

Lab Sample ID: LCS-120908

LIMS ID: 08-32709 Matrix: Sediment

Data Release Authorized: Reported: 12/12/08

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Event: NA Date Sampled: NA Date Received: NA

Date Extracted: 12/09/08

Date Analyzed LCS: 12/12/08 11:39 Instrument/Analyst LCS: NT1/YZ

Sample Amount LCS: 10.0 g-dry-wt

Final Extract Volume LCS: 0.50 mL Dilution Factor LCS: 1.00

		Spike	
Analyte	LCS	Added	Recovery
Acenaphthene	90.5	150	60.3%
Fluorene	95.5	150	63.7%
Phenanthrene	97.0	150	64.7%
Anthracene	102	150	68.0%
Fluoranthene	112	150	74.7%
Pyrene	116	150	77.3%
Benzo(a) anthracene	110	150	73.3%
Chrysene	111	150	74.0%
Benzo(b) fluoranthene	104	150	69.3%
Benzo(a)pyrene	114	150	76.0%
Indeno(1,2,3-cd)pyrene	108	150	72.0%
Dibenz (a, h) anthracene	110	150	73.3%
Benzo(g,h,i)perylene	107	150	71.3%

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 62.0% d14-Dibenzo(a,h)anthracen 83.0%

Page 1 of 1

Lab Sample ID: MB-120908

LIMS ID: 08-32709 Matrix: Sediment

Data Release Authorized: WW

Reported: 12/16/08

Date Extracted: 12/09/08 Date Analyzed: 12/12/08 18:21 Instrument/Analyst: NT4/PK

GPC Cleanup: No

Sample ID: MB-120908 METHOD BLANK

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

NA

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Percent Moisture: NA

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 Ŭ
85-68-7	Butylbenzylphthalate	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	49.2%
2-Fluorobiphenyl	60.8%
d14-p-Terphenyl	65.2%
d4-1,2-Dichlorobenzene	58.8%

Page 1 of 1

Lab Sample ID: OC80A LIMS ID: 08-32709

Matrix: Sediment

Data Release Authorized: \\W

Reported: 12/16/08

Date Extracted: 12/09/08 Date Analyzed: 12/12/08 19:28 Instrument/Analyst: NT4/PK

GPC Cleanup: No

Sample ID: COMP A-U SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	53.6%
2-Fluorobiphenyl	66.4%
d14-p-Terphenyl	66.8%
d4-1.2-Dichlorobenzene	57.6%

Page 1 of 1

Lab Sample ID: OC80A LIMS ID: 08-32709

Matrix: Sediment

Data Release Authorized: WW

Reported: 12/16/08

Date Extracted: 12/09/08 Date Analyzed: 12/12/08 20:02 Instrument/Analyst: NT4/PK

GPC Cleanup: No

Sample ID: COMP A-U MATRIX SPIKE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	20	
84-66-2	Diethylphthalate	20	
85-68-7	Butylbenzylphthalate	20	
117-81-7	bis(2-Ethylhexyl)phthalate	20	
117-84-0	Di-n-Octyl phthalate	20	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	65.2%
2-Fluorobiphenyl	72.8%
d14-p-Terphenyl	70.4%
d4-1,2-Dichlorobenzene	64.4%

그 나고 그는 그가 가지 그녀를 느무지는 게임하게 되다는 그 나라야? 그는 회원회에 취임이 가는 게임으로 가고 차를 하는 생각을 받았다. 그는 경기가 다른

Page 1 of 1

Sample ID: COMP A-U

MATRIX SPIKE DUPLICATE

Lab Sample ID: OC80A LIMS ID: 08-32709 Matrix: Sediment

Data Release Authorized: WW

Date Analyzed: 12/12/08 20:36

Reported: 12/16/08

GPC Cleanup: No

Date Extracted: 12/09/08

Instrument/Analyst: NT4/PK

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 26.2 g-dry-wt

Final Extract Volume: 0.5 mL

Dilution Factor: 1.00 Percent Moisture: 15.1%

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	19	
84-66-2	Diethylphthalate	19	
85-68-7	Butylbenzylphthalate	19	
117-81-7	bis(2-Ethylhexyl)phthalate	19	
117-84-0	Di-n-Octyl phthalate	19	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	66.0%
2-Fluorobiphenyl	72.8%
d14-p-Terphenyl	69.6%
d4-1,2-Dichlorobenzene	65.6%

Page 1 of 1

Lab Sample ID: OC80B LIMS ID: 08-32710

Matrix: Sediment

Data Release Authorized: WW

Reported: 12/16/08

Date Extracted: 12/09/08 Date Analyzed: 12/12/08 21:10 Instrument/Analyst: NT4/PK

GPC Cleanup: No

Sample ID: COMP A-L

SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 12.8%

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	19	< 19 U
84-66-2	Diethylphthalate	19	< 19 U
85-68-7	Butylbenzylphthalate	19	< 19 U
117-81-7	bis(2-Ethylhexyl)phthalate	19	< 19 U
117-84-0	Di-n-Octyl phthalate	19	< 19 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	62.0%
2-Fluorobiphenyl	80.4%
d14-p-Terphenyl	69.2%
d4-1,2-Dichlorobenzene	67.2%

Lab Sample ID: OC80C LIMS ID: 08-32711

Matrix: Sediment

Data Release Authorized:

Reported: 12/16/08

Date Extracted: 12/09/08
Date Analyzed: 12/12/08 21:43
Instrument/Analyst: NT4/PK

GPC Cleanup: No

Sample ID: COMP B-U

SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

AN

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.4 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 13.7%

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	58.8%
2-Fluorobiphenyl	70.8%
d14-p-Terphenyl	72.4%
d4-1 2-Dichlorobenzene	65.2%

1 of 1Page

Lab Sample ID: OC80D LIMS ID: 08-32712

Matrix: Sediment

Data Release Authorized: WW

Reported: 12/16/08

Date Extracted: 12/09/08 Date Analyzed: 12/12/08 22:17 Instrument/Analyst: NT4/PK

GPC Cleanup: No

Sample ID: COMP B-L SAMPLE

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

NA

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount: 25.5 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Percent Moisture: 15.7%

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U

Reported in µg/kg (ppb)

d5-Nitrobenzene	62.0%
2-Fluorobiphenyl	68.8%
d14-p-Terphenyl	70.0%
d4-1.2-Dichlorobenzene	65.2%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Client ID	NBZ	FBP	TPH	DCB TO	OT OUT
MB-120908	49.2%	60.8%	65.2%	58.8%	0
LCS-120908	51.2%	71.6%	70.8%	62.4%	0
COMP A-U	53.6%	66.4%	66.8%	57.6%	0
COMP A-U MS	65.2%	72.8%	70.4%	64.4%	0
COMP A-U MSD	66.0%	72.8%	69.6%	65.6%	0
COMP A-L	62.0%	80.4%	69.2%	67.2%	0
COMP B-U	58.8%	70.8%	72.4%	65.2%	0
COMP B-L	62.0%	68.8%	70.0%	65.2%	0

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(37-85)	(29-87)
(FBP)	=	2-Fluorobiphenyl	(39-82)	(32-88)
(TPH)	=	d14-p-Terphenyl	(38-105)	(21-97)
(DCB)	=	d4-1,2-Dichlorobenzene	(33-79)	(25-82)

Prep Method: SW3550B

Log Number Range: 08-32709 to 08-32712

Page 1 of 1

Lab Sample ID: OC80A LIMS ID: 08-32709

Matrix: Sediment

Data Release Authorized:

Reported: 12/16/08

Date Extracted MS/MSD: 12/09/08

Date Analyzed MS: 12/12/08 20:02

MSD: 12/12/08 20:36

Instrument/Analyst MS: NT4/PK MSD: NT4/PK

GPC Cleanup: NO

Sample ID: COMP A-U

MS/MSD

QC Report No: OC80-Newfields Northwest

Project: MARINA PARK

Date Sampled: 11/26/08 Date Received: 12/05/08

Sample Amount MS: 25.6 g-dry-wt

MSD: 26.2 g-dry-wt

Final Extract Volume MS: 0.5 mL

MSD: 0.5 mL

Dilution Factor MS: 1.00

MSD: 1.00

Percent Moisture: 15.1 %

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Dimethylphthalate	< 19.6	397	489	81.2%	369	478	77.2%	7.3%
Diethylphthalate	< 19.6	399	489	81.6%	373	478	78.0%	6.7%
Butylbenzylphthalate	< 19.6	356	489	72.8%	336	478	70.3%	5.8%
bis(2-Ethylhexyl)phthalate	< 19.6	412	489	84.3%	381	478	79. 7 %	7.8%
Di-n-Octyl phthalate	< 19.6	405	489	82.8%	368	478	77.0%	9.6%

Results reported in µg/kg RPD calculated using sample concentrations per SW846.

Page 1 of 1

Sample ID: LCS-120908

LAB CONTROL

Lab Sample ID: LCS-120908

LIMS ID: 08-32709 Matrix: Sediment

Data Release Authorized:

Date Extracted: 12/09/08

Date Analyzed: 12/12/08 18:55

Instrument/Analyst: NT4/PK

Reported: 12/16/08

GPC Cleanup: NO

Project: MARINA PARK

QC Report No: OC80-Newfields Northwest

Date Sampled: 11/26/08

Date Received: 12/05/08

Sample Amount: 25.0 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Percent Moisture: NA

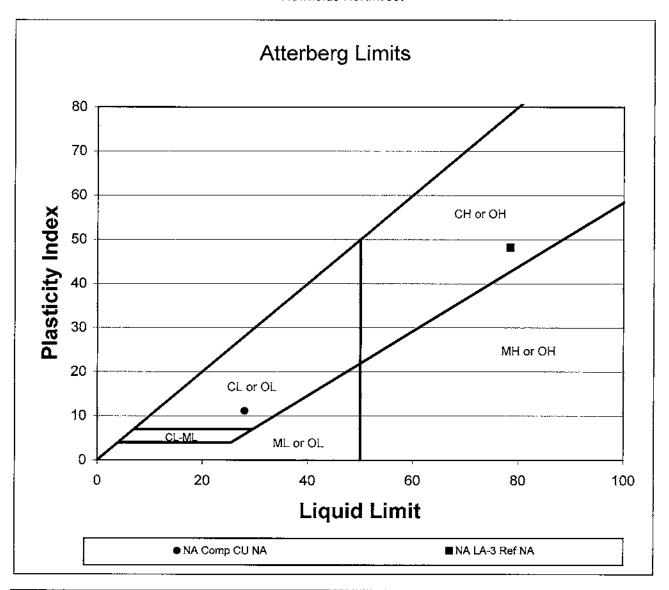
Analyte	Lab Control	Spike Added	Recovery
Dimethylphthalate	393	500	78.6%
Diethylphthalate	405	500	81.0%
Butylbenzylphthalate	359	500	71.8%
bis (2-Ethylhexyl) phthalate	385	500	77.0%
Di-n-Octyl phthalate	375	500	75.0%

Semivolatile Surrogate Recovery

51.2%
71.6%
70.8%
62.4%

Results reported in µg/kg

GEOTECHNICAL ANALYSIS DATA SHEET Moisture Content by Method ASTM D2216


Data Release Authorized: (4)
Reported: 01/09/09
Date Received: 12/17/08
Page 1 of 1

QC Report No: OF06-Newfields Northwest Project: Marina Park

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	Result
Comp CU OF06A 08-34190	12/08/08	Sediment	01/07/09 12:56	28.86
Comp CL OF06B 08-34191	12/08/08	Sediment	01/07/09 12:56	17.21
LA-3 Ref OF06C 08-34192	12/08/08	Sediment	01/07/09 12:56	111.7

Reported in Percent

Newfields Northwest

Boring Number	Sample Number	Depth (ft)	As-Received Moisture Content	Plasticity Index	Liquid Limit	Plastic Limit	USCS
NA	Comp CU	NA	28.86	11.2	28.0	16.9	CL
NA	Comp CL	NA	17.21	NA :	NA	NA	NP
NA	LA-3 Ref	NA	111.70	48.2	78.5	30.3	СН

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: Comp CU

Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06A.SMP

Material/Liquid: Sediment / 0.05% Sodium Metaphosphate (w/w)

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 11:16:09AM Reported: 1/9/2009 12:42:35PM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj)

Run Time: 0:10 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 102 kCnts/s

Reynolds Number: 0.43

Report by Sieve Size

Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)
No. 4	4750.0	100.0	0.0	No. 60	250.0	57.2	17.9
No. 10	2000.0	99.1	0.9	No. 120	125.0	36.7	20.5
No. 18	1000.0	92.5	6.6	No. 230	63.0	22.1	14.6
No. 35	500.0	75.1	17.4	No. 635	20.0	20.2	1.9

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 2

Sample ID: Comp CU

Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06A.SMP

Material/Liquid: Sediment / 0.05% Sodium Metaphosphate (w/w)

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 11:16:09AM Reported: 1/9/2009 12:42:35PM Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)

Run Time: 0:10 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 102 kCnts/s

Reynolds Number: 0.43

Report by Size Table

High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)	High lameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
300.0	57.2	4.7	15.00	18.3	1.1
250.0	50.9	6.3	10.00	17.5	0.8
200.0	42.1	8.8	8.000	16.5	1.1
150.0	30.3	11.8	6.000	15.7	0.7
100.0	24.9	5.4	5.000	14.6	1.1
80.00	22.0	2.8	4.000	13.3	1.2
60.00	21.7	0.3	3.000	11.6	1.7
50.00	21.5	0.3	2.000	10.5	1.1
40.00	21.0	0.5	1.500	8.8	1.6
30.00	20.6	0.3	1.000	8.0	0.9
25.00	20.2	0.5	0.800	6.8	1.2
20.00	19.5	0.7	0.600	6.1	0.7

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: Comp CU

Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06A.SMP

Material/Liquid: Sediment / 0.05% Sodium Metaphosphate (w/w)
Measurement Principle: X-Ray monitored gravity sedimentation
Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 11:16:09AM Reported: 1/9/2009 12:42:35PM Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:10 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 102 kCnts/s Reynolds Number: 0.43

Report by Mass Percent

			• • • • • • • • • • • • • • • • • • • •			
High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)		High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
4750	100.0	0.0		230.5	50.0	5.0
4750	95.0	5.0		194.2	45.0	5.0
1130	90.0	5.0		165.0	40.0	5.0
901.6	85.0	5.0		140.0	35.0	
737.0	80.0	5.0		117.8	30.0	5.0
605.2	75.0	5.0		98.94		5.0
498.1	70.0	5.0			25.0	5.0
410.0	65.0	5.0		80.58	20.0	5.0
337.6	60.0			18.64	15.0	5.0
278.4		5.0		4.341	10.0	5.0
210.4	55.0	5.0		1.334	5.0	5.0

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 4

Sample ID: Comp CU Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06A.SMP

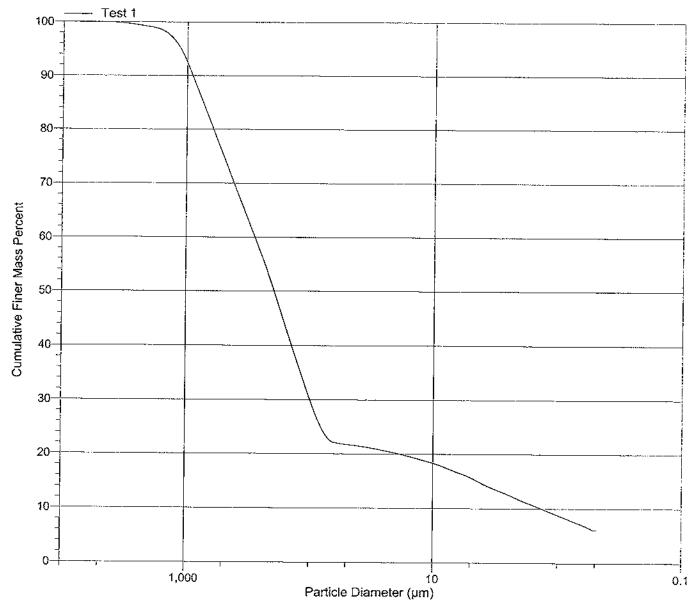
Material/Liquid: Sediment / 0.05% Sodium Metaphosphate (w/w)

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 11:16:09AM Reported: 1/9/2009 12:42:35PM Liquid Visc: 0.7230 cp


Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:10 hrs:min

Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 102 kCnts/s

Reynolds Number: 0.43

Cumulative Finer Mass Percent vs. Diameter

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: Comp CL

Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06B.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 11:47:07AM Reported: 1/9/2009 12:46:53PM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj)

Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 107 kCnts/s

Reynolds Number: 0.30

Report by Sieve Size

		Cumulative				Cumulative	
Sieve Name	Aperture Size (µm)	Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Mass Passed (Percent)	Mass Frequency (Percent)
5/8 in.	16000.0	100.0	0.0	No. 60	250.0	7.1	23.2
No. 4	4750.0	96.3	3.7	No. 120	125.0	2.4	4.7
No. 10	2000.0	86.6	9.7	No. 230	63.0	8.0	1.6
No. 18	1000.0	65.1	21.5	No. 635	20.0	0.7	0.1
No. 35	500.0	30.3	34.8				

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 2

Sample ID: Comp CL

Operator: gs Client: Newfields Northwest File: C:\...\OF06\OF06B.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 11:47:07AM Reported: 1/9/2009 12:46:53PM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj)

Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 107 kCnts/s

Reynolds Number: 0.30

Report by Size Table

High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
300.0	7.1	3.7	20.00	0.7	0.0
250.0	4.8	2.3	15.00	0.7	0.0
200.0	3.0	1.8	10.00	0.7	0.0
150.0	1.7	1.3	8.000	0.7	0.0
100.0	1.1	0.6	6.000	0.7	0.0
80.00	0.8	0.3	5.000	0.6	0.0
60.00	8.0	0.0	4.000	0.6	0.0
50.00	8.0	0.0	3.000	0.5	0.0
40.00	0.8	0.0	2.000	0.5	0.0
30.00	0.8	0.0	1.500	0.5	0.0
25.00	0.7	0.0	1.300	0.5	0.0

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: Comp CL

Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06B.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analysis Temp: 35.0 °C

Analyzed: 1/9/2009 11:47:07AM Reported: 1/9/2009 12:46:53PM Liquid Visc: 0.7230 cp

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 107 kCnts/s

Reynolds Number: 0.30

Report by Mass Percent

High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
9500	100.0	0.0	808.4	50.0	5.0
9500	95.0	5.0	735.7	45.0	5.0
3928	90.0	5.0	670.8	40.0	5.0
2514	85.0	5.0	610.8	35.0	5.0
1833	0.08	5.0	553.5	30.0	5.0
1505	75.0	5.0	496.5	25.0	5.0
1292	70.0	5.0	442.2	20.0	5.0
1129	65.0	5.0	392.1	15.0	5.0
997.6	60.0	5.0	343.5	10.0	5.0
892.9	55.0	5.0	291.3	5.0	5.0

SediGraph III V1.04

Unit 1

Serial Number: 399

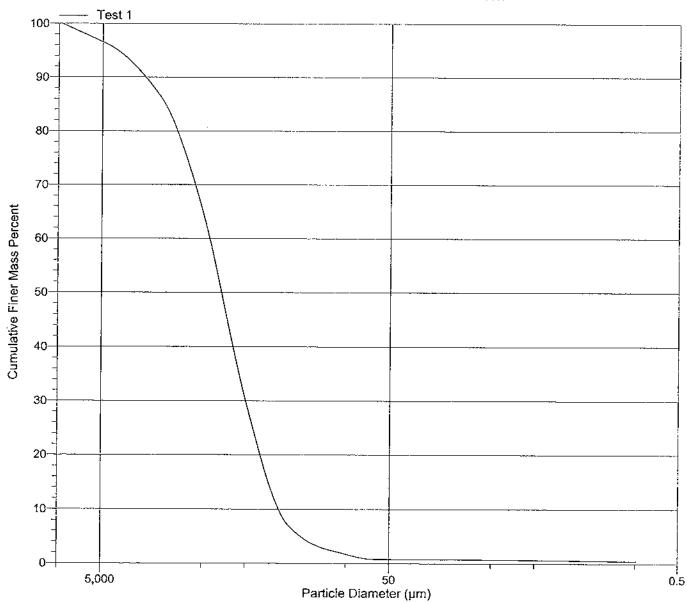
Page 4

Sample ID: Comp CL Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06B.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation


Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 11:47:07AM Reported: 1/9/2009 12:46:53PM Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 107 kCnts/s

Reynolds Number: 0.30

Cumulative Finer Mass Percent vs. Diameter

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: LA-3 Ref

Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06C.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 12:52:45PM Reported: 1/9/2009 1:03:57PM

Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 77 kCnts/s

Reynolds Number: 0.30

Report by Sieve Size

				OIOTO DILO			
Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)
No. 4	4750.0	100.0	0.0	No. 60	250.0	99.2	0.4
No. 10	2000.0	99.9	0.1	No. 120	125.0	97.8	1.4
No. 18	1000.0	99.8	0.1	No. 230	63.0	92.1	5.7
No. 35	500.0	99.6	0.2	No. 635	20.0	63.4	28.7

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 2

Sample ID: LA-3 Ref

Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06C.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 12:52:45PM Reported: 1/9/2009 1:03:57PM Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 77 kCnts/s
Reynoids Number: 0.30

Report by Size Table

High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
300.0	99.2	0.1	20.00	55.4	8.0
250.0	98.9	0.3	15.00	46.1	9.3
200.0	98.3	0.6	10.00	41.8	4.3
150.0	96.2	2.1	8.000	37.8	4.0
100.0	93.7	2.5	6.000	35.5	2.3
80.00	92.1	1,6	5.000	32.8	
60.00	91.5	0.6	4.000	29.6	2.7
50.00	87.6	3.9	3.000		3.3
40.00	77.3	10.2		25.9	3.7
30.00	70.7		2.000	23.8	2.0
25.00	63.4	6.6 7.3	1.500	19.5	4.3

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: LA-3 Ref Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06C.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 12:52:45PM Reported: 1/9/2009 1:03:57PM Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:mln Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 77 kCnts/s

Reynolds Number: 0.30

Report by Mass Percent

Cumulative			Cumulative			
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (μm)	Mass Finer (Percent)	Mass Frequency (Percent)	
4750	100.0	0.0	17.77	55.0	5.0	
4750	95.0	5.0	14.78	50.0	5.0	
89.92	90.0	5.0	12.03	45.0	5.0	
44.37	85.0	5.0	9.490	40.0	5.0	
36.87	80.0	5.0	7.113	35.0	5.0	
32.19	75.0	5.0	4.806	30.0	5.0	
28.18	70.0	5.0	3.130	25.0	5.0	
24.51	65.0	5.0	1.786	20.0	5.0	
21.07	60.0	5.0	1.069	15.0	5.0	

SediGraph III V1.04

Unit 1

Serial Number: 399

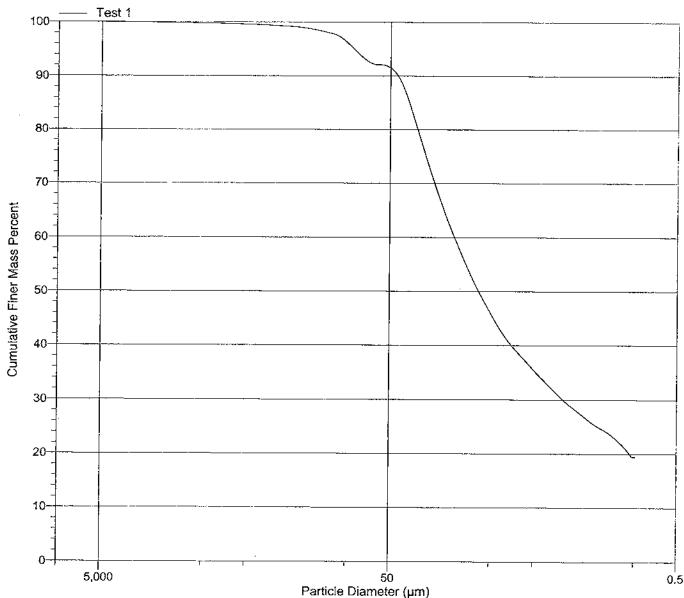
Page 4

Sample ID: LA-3 Ref Operator: gs

Client: Newfields Northwest File: C:\...\OF06\OF06C.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation


Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 12:52:45PM Reported: 1/9/2009 1:03:57PM Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 77 kCnts/s

Reynolds Number: 0.30

Cumulative Finer Mass Percent vs. Diameter

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 1

> Sample ID: MP-10U Operator: BR

> > Client: Newfields Northwest File: C:\...\OF06\OF06D.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 1:47:47PM Reported: 1/13/2009 11:39:07AM Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 75 kCnts/s
Reynolds Number: 0.30

Report by Sieve Size

		Cumulative			Cumulative		
Sieve Name	Aperture Size (µm)	Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Mass Passed (Percent)	Mass Frequency (Percent)
5/8 in.	16000.0	100.0	0.0	No. 60	250.0	8.8	27.8
No. 4	4750.0	99.2	8.0	No. 120	125.0	4.0	4.8
No. 10	2000.0	96.6	2.6	No. 230	63.0	2.5	1.5
No. 18	1000.0	84.4	12.2	No. 635	20.0	2.2	0.3
No. 35	500.0	36.6	47.8				

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 2

Sample ID: MP-10U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06D.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

 Test Number:
 1
 Analysis Type:
 High Speed(Adj)

 Analyzed:
 1/12/2009 1:47:47PM
 Run Time:
 0:05 hrs:min

 Reported:
 1/13/2009 11:39:07AM
 Sample Density:
 2.650 g/cm³

 Liquid Visc:
 0.7228 cp
 Liquid Density:
 0.9941 g/cm³

 Analysis Temp:
 35.0 °C
 Base/Full Scale:
 128 / 75 kCnts/s

Reynolds Number: 0.30

Report by Size Table

Cumulative			Cumulative				
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)		
300.0	8.8	4.1	20.00	2.1	0.1		
250.0	6.6	2.2	15.00	1.8	0.2		
200.0	4.7	1.9	10.00	1.5	0.3		
150.0	3.4	1.3	8.000	1.0	0.5		
100.0	2.8	0.6	6.000	0.9	0.1		
80.00	2.5	0.3	5.000	0.9	0.0		
60.00	2.5	0.0	4.000	0.9	0.0		
50.00	2.4	0.1	3.000	8.0	0.0		
40.00	2.3	0.1	2.000	0.8	0.0		
30.00	2.3	0.1	1.500	0.9	-0.1		
25.00	22	0.1					

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: MP-10U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06D.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 1:47:47PM Reported: 1/13/2009 11:39:07AM Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 75 kCnts/s

Reynolds Number: 0.30

High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
9500	100.0	0.0	649.8	50.0	5.0
9500	95.0	5.0	610.6	45.0	5.0
1606	90.0	5.0	571.5	40.0	5.0
1209	85.0	5.0	530.7	35.0	5.0
1018	80.0	5.0	484.8	30.0	5.0
908.3	75.0	5.0	440.3	25.0	5.0
838.4	70.0	5.0	399.2	20.0	5.0
782.5	65.0	5.0	359.5	15.0	5.0
734.3	60.0	5.0	318.8	10.0	5.0
690.6	55.0	5.0	269.1	5.0	5.0

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 4

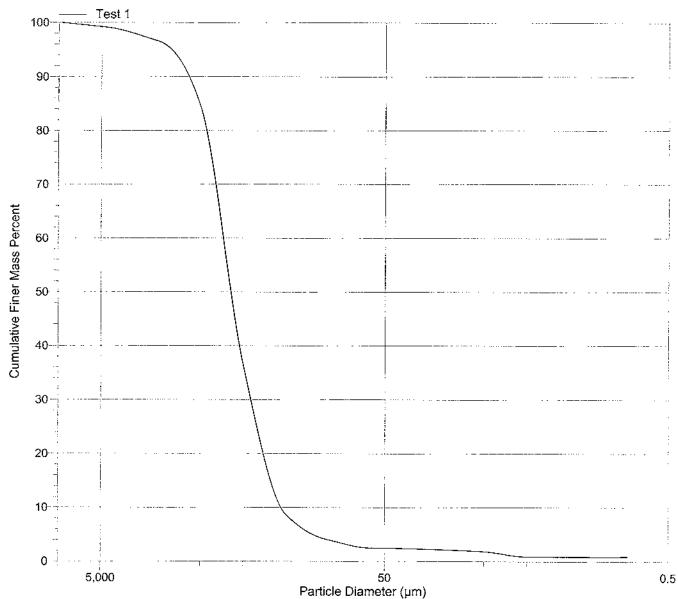
Sample ID: MP-10U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06D.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction


Test Number: 1

Analyzed: 1/12/2009 1:47:47PM Reported: 1/13/2009 11:39:07AM

Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³

Base/Full Scale: 128 / 75 kCnts/s

Reynolds Number: 0.30

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: MP-10L Operator: BR

> Client: Newfields Northwest File: C:\...\OF06\OF06E.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 4:51:53PM Reported: 1/13/2009 11:43:25AM

Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 88 kCnts/s
Reynolds Number: 0.30

Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)
No. 4	4750.0	100.0	0.0	No. 60	250.0	89.6	7.5
No. 10	2000.0	99.8	0.2	No. 120	125.0	54.6	35.0
No. 18	1000.0	99.2	0.6	No. 230	63.0	34.5	20.1
No. 35	500.0	97.1	2.1	No. 635	20.0	32.6	1.9

SediGraph III V1.04

Unit 1

Serial Number: 399

Analysis Type: High Speed(Adj)

Page 2

Sample ID: MP-10L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06E.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 4:51:53PM Reported: 1/13/2009 11:43:25AM Liquid Visc: 0.7228 cp

Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 88 kCnts/s Analysis Temp: 35.0 °C

Reynolds Number: 0.30

High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
300.0	89.6	3.3	20.00	31.6	1.0
250.0	80.7	8.9	15.00	29.8	1.8
200.0	63.6	17.1	10.00	28.3	1.5
150.0	45.8	17.9	8.000	26.4	1.9
100.0	38.2	7.6	6.000	25.1	1.3
80.00	34.5	3.7	5.000	23.4	1.7
60.00	34.3	0.2	4.000	21.1	2.2
50.00	34.0	0.3	3.000	18.4	2.7
40.00	33.5	0.5	2.000	16.6	1.8
30.00	33.0	0.4	1.500	15.0	1.6
25.00	32.6	0.5			

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: MP-10L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06E.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 4:51:53PM Reported: 1/13/2009 11:43:25AM

Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj)

Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 88 kCnts/s

Reynolds Number: 0.30

	Cumulative	•	·	umulative	
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)
4750	100.0	0.0	126.3	50.0	5.0
4750	95.0	5.0	111.3	45.0	5.0
356.6	90.0	5.0	98.06	40.0	5.0
254.8	85.0	5.0	85.15	35.0	5.0
218.1	80.0	5.0	68.19	30.0	5.0
197.4	75.0	5.0	10.29	25.0	5.0
181.0	70.0	5.0	4.924	20.0	5.0
166.8	65.0	5.0	2.543	15.0	5.0
153.6	60.0	5.0	1.115	10.0	5.0
140.5	55.0	5.0			

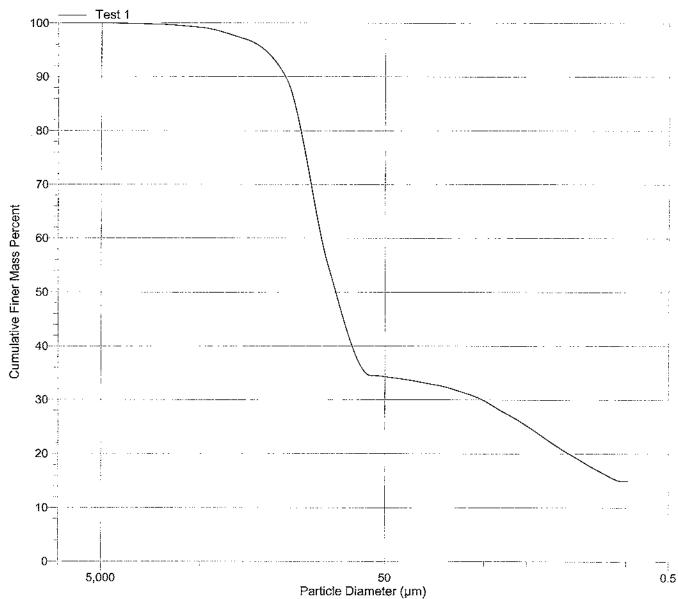
SediGraph III V1.04 Unit 1 Serial Number: 399 Page 4

Sample ID: MP-10L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06E.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation


Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 4:51:53PM Reported: 1/13/2009 11:43:25AM

Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 88 kCnts/s

Reynolds Number: 0.30

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: MP-12U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06F.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 1:11:12PM Reported: 1/13/2009 11:44:41AM Liquid Visc: 0.7229 cp

Liquid Visc: 0.7229 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 87 kCnts/s

Reynolds Number: 0.30

		Cumulative				Cumulative	
Sieve	Aperture	Mass	Mass	Sieve	Aperture	Mass	Mass
Name	Size	Passed	Frequency	Name	Size	Passed	Frequency
	(µm)	(Percent)	(Percent)		(µm)	(Percent)	(Percent)
5/8 in.	16000.0	100.0	0.0	No. 60	250.0	43.4	24.5
No. 4	4750.0	95.7	4.3	No. 120	125.0	16.2	27.2
No. 10	2000.0	93.0	2.7	No. 230	63.0	3.6	12.6
No. 18	1000.0	86.1	6.9	No. 635	20.0	3.5	0.1
No. 35	500.0	67.9	18.2				

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 2

Sample ID: MP-12U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06F.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1
 Analyzed: 1/12/2009 1:11:12PM
 Reported: 1/13/2009 11:44:41AM
 Liquid Visc: 0.7229 cp
Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 87 kCnts/s

Reynolds Number: 0.30

High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
300.0	43.4	6.6	20.00	3.4	0.1
250.0	34.7	8.7	15.00	3.4	0.0
200.0	23.1	11.7	10.00	3.4	0.0
150.0	9.4	13.6	8.000	3.3	0.1
100.0	5.2	4.3	6.000	3.3	0.0
80.00	3.6	1.6	5.000	3.2	0.0
60.00	3.6	0.0	4.000	3.0	0.2
50.00	3.6	0.0	3.000	1.1	2.0
40.00	3.5	0.1	2.000	0.7	0.4
30.00	3.5	0.0	1.500	0.7	0.0
25.00	3.5	0.0			

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: MP-12U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06F.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 1:11:12PM Reported: 1/13/2009 11:44:41AM

Liquid Visc: 0.7229 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)

Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 87 kCnts/s

Reynolds Number: 0.30

	Cumulative		Cume	lative
High Diameter	Mass F≀ner	Mass Frequency	High Ma Diameter Fir	
(µm)	(Percent)	(Percent)	(μm) (Perd	cent) (Percent)
9500	100.0	0.0	344.7 50	0.0 5.0
9500	95.0	5.0	299.8 45	5.0 5.0
4149	90.0	5.0	261.2 40).0 5.0
1327	85.0	5.0	228.4 35	5.0 5.0
940.5	80.0	5.0	201.3 30).0 5.0
750.7	75.0	5.0	178.0 25	5.0 5.0
625.7	70.0	5.0	157.4 20).0 5.0
532.8	65.0	5.0	138.5 15	5.0 5.0
459.0	60.0	5.0	120.8 10).0 5.0
397.1	55.0	5.0	102.2 5	.0 5.0

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 4

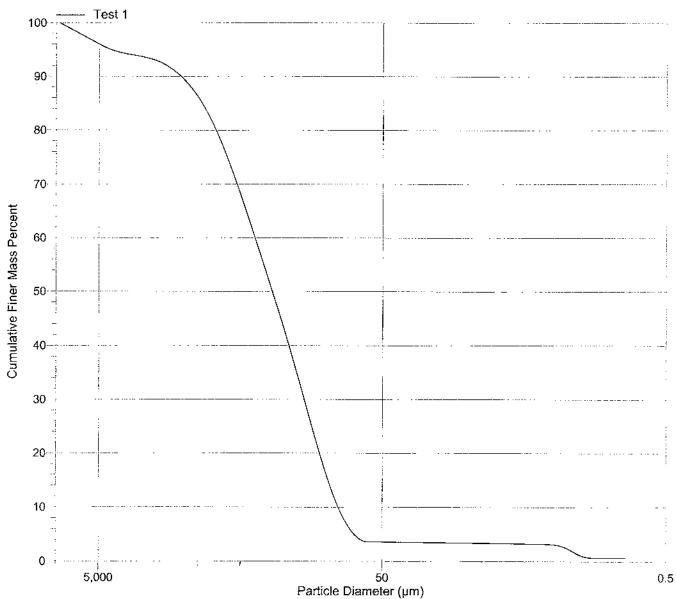
Sample ID: MP-12U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06F.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction


Test Number: 1

Analyzed: 1/12/2009 1:11:12PM Reported: 1/13/2009 11:44:41AM

Liquid Visc: 0.7229 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³

Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 87 kCnts/s

Reynolds Number: 0.30

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: MP-12L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06G.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 5:18:32PM Reported: 1/13/2009 11:45:48AM

Liquid Visc: 0.7229 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 73 kCnts/s

Reynolds Number: 0.30

			1 3				
Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)
No. 4	4750.0	100.0	0.0	No. 60	250.0	97.1	1.5
No. 10	2000.0	99.4	0.6	No. 120	125.0	88.7	8.4
No. 18	1000.0	99.3	0.1	No. 230	63.0	78.4	10.3
No. 35	500.0	98.6	0.7	No. 635	20.0	74.9	3.5

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 2

> Sample ID: MP-12L Operator: BR

> > Client: Newfields Northwest File: C:\...\OF06\OF06G.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1 Analyzed: 1/9/2009 5:18:32PM Reported: 1/13/2009 11:45:48AM Liquid Visc: 0.7229 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 73 kCnts/s
Reynolds Number: 0.30

	Cumulative			Cumulative	
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)
300.0	97.1	0.7	20.00	72.8	2.1
250.0	95.2	1.9	15.00	68.0	4.8
200.0	91.3	3.9	10.00	64.7	3.2
150.0	84.9	6.3	8.000	59.7	5.0
100.0	80.9	4.1	6.000	56.3	3.4
80.00	78.4	2.5	5.000	52.2	4.1
60.00	78.2	0.2	4.000	46.6	5.6
50.00	77.7	0.5	3.000	39.8	6.8
40.00	77.2	0.5	2.000	35.7	4.1
30.00	76.2	1.0	1.500	30.5	5.2
25.00	74.9	1.3			

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: MP-12L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06G.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1 Analyzed: 1/9/2009 5:18:32PM Reported: 1/13/2009 11:45:48AM Liquid Visc: 0.7229 cp

Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 73 kCnts/s

Reynolds Number: 0.30

	Cumulative		•	Cumulative)
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	Hiç Diam (µг	eter Finer	Mass Frequency (Percent)
4750	100.0	0.0	8.1	146 60.0	5.0
4750	95.0	5.0	6.0	90 55.0	5.0
196.9	90.0	5.0	4.6	50.0	5.0
137.3	85.0	5.0	3.5	573 45.0	5.0
100.4	80.0	5.0	2.7	44 40.0	5.0
75.49	75.0	5.0	2.0	21 35.0	5.0
20.50	70.0	5.0	1.4	23 30.0	5.0
11.69	65.0	5.0			

SediGraph III V1.04

Unit 1

Serial Number: 399

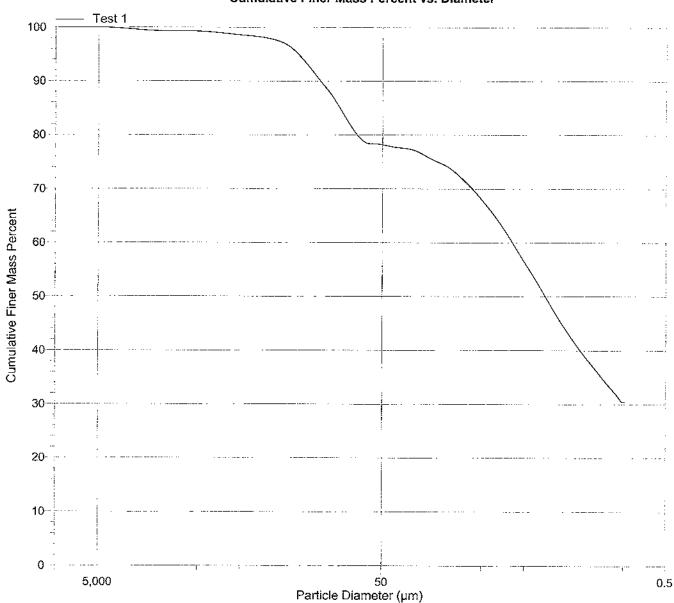
Page 4

Sample ID: MP-12L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06G.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation


Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 5:18:32PM Reported: 1/13/2009 11:45:48AM

Liquid Visc: 0.7229 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 73 kCnts/s

Reynolds Number: 0.30

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: MP-13U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06H.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 3:30:40PM Reported: 1/13/2009 11:47:33AM

Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 95 kCnts/s

Reynolds Number: 0.30

Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)
No. 10	2000.0	100.0	0.0	No. 120	125.0	32.6	19.2
No. 18	1000.0	98.0	2.0	No. 230	63.0	12.7	19.9
No. 35	500.0	79.0	19.0	No. 635	20.0	11.2	1.5
No. 60	250.0	51.8	27.2				

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 2

> Sample ID: MP-13U Operator: BR

> > Client: Newfields Northwest File: C:\...\OF06\OF06H.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1 Analysis Type: High Speed(Adj) Analyzed: 1/12/2009 3:30:40PM Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 95 kCnts/s
Reynolds Number: 0.30 Reported: 1/13/2009 11:47:33AM Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C

	Cumulative			Cumulative	
High	Mass	Mass	Hìgh	Mass	Mass
Diameter	Finer	Frequency	Diameter	Finer	Frequency
(µm)	(Percent)	(Percent)	(µm)	(Percent)	(Percent)
300.0	51.8	6.3	20.00	11.0	0.2
250.0	45.5	6.3	15.00	10.3	0.7
200.0	37.6	7.9	10.00	10.0	0.3
150.0	25.1	12.5	8.000	9.7	0.3
100.0	17.4	7.7	6.000	9.4	0.3
80.00	12.7	4.7	5.000	9.0	0.4
60.00	12.6	0.1	4.000	8.6	0.4
50.00	12.2	0.3	3.000	7.3	1.3
40.00	11.9	0.4	2.000	4.3	3.0
30.00	11.6	0.3	1.500	2.6	1.7
25.00	11.2	0.4			,,,

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: MP-13U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06H.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 3:30:40PM Reported: 1/13/2009 11:47:33AM Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 95 kCnts/s
Reynoids Number: 0.30

Cumulative High Mass Mass			- High	Cumulative High Mass Mass			
Diameter	Finer	Frequency	Diameter	Finer	Mass Frequency		
(µm)	(Percent)	(Percent)	(hw)	(Percent)	(Percent)		
3082	100.0	0.0	276.2	50.0	5.0		
3082	95.0	5.0	234.8	45.0	5.0		
824.4	90.0	5.0	196.3	40.0	5.0		
686.7	85.0	5.0	163.5	35.0	5.0		
591.7	80.0	5.0	136.2	30.0	5.0		
514.3	75.0	5.0	114.9	25.0	5.0		
449.9	70.0	5.0	99.68	20.0	5.0		
398.8	65.0	5.0	86.68	15.0	5.0		
355.0	60.0	5.0	73,11	10.0	5.0		
315.0	55.0	5.0	7.920	5.0	5.0		

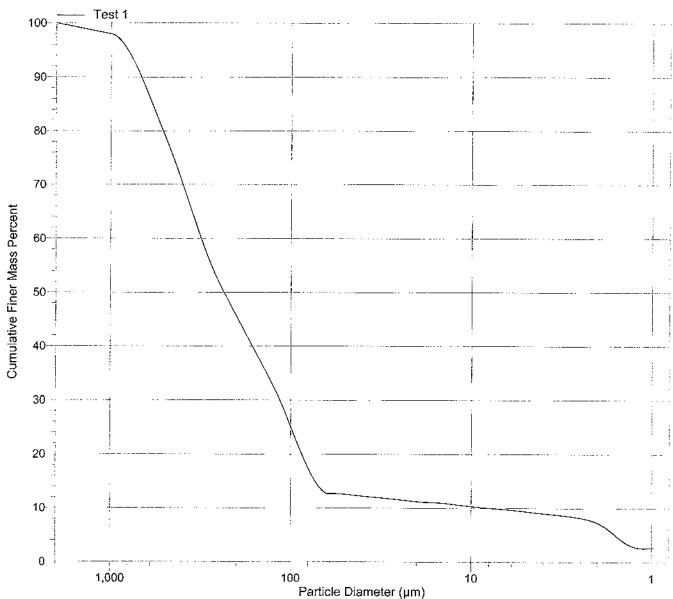
SediGraph III V1.04 Unit 1 Serial Number: 399 Page 4

Sample ID: MP-13U Operator: BR

> Client: Newfields Northwest File: C:\...\OF06\OF06H.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation


Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 3:30:40PM Reported: 1/13/2009 11:47:33AM

Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 95 kCnts/s

Reynolds Number: 0.30

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: MP-13L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06I.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 3:52:57PM Reported: 1/13/2009 11:50:50AM

Liquid Visc: 0.7227 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)

Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 78 kCnts/s

Reynolds Number: 0.30

		Cumulative				Cumulative	
Sieve Name	Aperture Size (µm)	Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Mass Passed (Percent)	Mass Frequency (Percent)
5/8 in.	16000.0	100.0	0.0	No. 60	250.0	13.5	30.2
No. 4	4750.0	97.5	2.5	No. 120	125.0	7.2	6.3
No. 10	2000.0	93.3	4.2	No. 230	63.0	3.1	4.1
No. 18	1000.0	77.8	15.5	No. 635	20.0	2.9	0.2
No. 35	500.0	43.7	34.1				

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 2

Sample ID: MP-13L Operator: BR

> Client: Newfields Northwest File: C:\...\OF06\OF06I.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 3:52:57PM Reported: 1/13/2009 11:50:50AM Liquid Visc: 0.7227 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 78 kCnts/s Reynolds Number: 0.30

	Cumulative		Cumulative				
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)		
300.0	13.5	5.6	20.00	2.7	0.1		
250.0	10.1	3.4	15.00	2.5	0.2		
200.0	8.2	1.9	10.00	2.3	0.2		
150.0	5.5	2.6	8.000	1.9	0.4		
100.0	3.9	1.6	6.000	1.4	0.5		
80.00	3.1	0.8	5.000	1.0	0.4		
60.00	3.1	0.0	4.000	1.0	0.1		
50.00	3.1	0.0	3.000	0.9	0.0		
40.00	3.0	0.1	2.000	0.9	0.0		
30.00	2.9	0.1	1.500	0.9	0.0		
25.00	2.9	0.1			2.0		

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 3

> Sample ID: MP-13L Operator: BR

> > Client: Newfields Northwest File: C:\...\OF06\OF06I.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Test Number: 1 Analyzed: 1/12/2009 3:52:57PM Reported: 1/13/2009 11:50:50AM Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 78 kCnts/s
Reynolds Number: 0.30 Liquid Visc: 0.7227 cp Analysis Temp: 35.0 °C

Cumulative			Cumulative			
High Diameter	Mass Finer	Mass Frequency	High Diameter	Mass Finer	Mass Frequency	
(µm)	(Percent)	(Percent)	(µm)	(Percent)	(Percent)	
9500	100.0	0.0	628.1	50.0	5.0	
9500	95.0	5.0	569.3	45.0	5.0	
2730	90.0	5.0	514.0	40.0	5.0	
1506	85.0	5.0	463.1	35.0	5.0	
1221	0.08	5.0	419.5	30.0	5.0	
1055	75.0	5.0	380.2	25.0	5.0	
938.4	70.0	5.0	343.3	20.0	5.0	
843.8	65.0	5.0	306.6	15.0	5.0	
763.1	60.0	5.0	265.6	10.0	5.0	
692.1	55.0	5.0	198.3	5.0	5.0	

SediGraph III V1.04

Unit 1

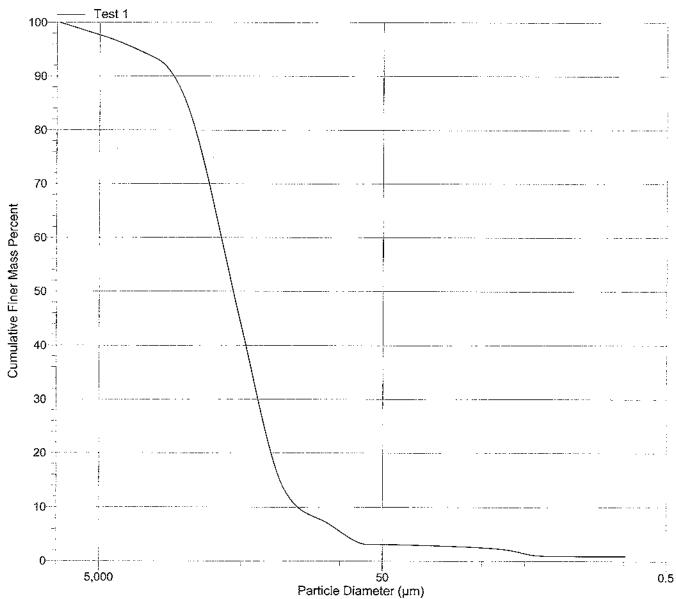
Serial Number: 399

Page 4

Sample ID: MP-13L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06I.SMP Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation


Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 3:52:57PM Reported: 1/13/2009 11:50:50AM

Liquid Visc: 0.7227 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 78 kCnts/s

Reynolds Number: 0.30

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: MP-14U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06J.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 4:18:05PM Reported: 1/13/2009 11:51:31AM

Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 102 kCnts/s

Reynolds Number: 0.30

		Cumulative				Cumulative	
Sieve Name	Aperture Size (µm)	Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Mass Passed (Percent)	Mass Frequency (Percent)
5/8 in.	16000.0	100.0	0.0	No. 60	250.0	14.1	36.4
No. 4	4750.0	99.8	0.2	No. 120	125.0	3.5	10.6
No. 10	2000.0	97.8	2.0	No. 230	63.0	1.1	2.4
No. 18	1000.0	83.0	14.8	No. 635	20.0	1.0	0.1
No. 35	500.0	50.5	32.5				

SediGraph III V1.04

Unit 1

Serial Number: 399

Analysis Type: High Speed(Adj)

Page 2

Sample ID: MP-14U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06J.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1 Analyzed: 1/12/2009 4:18:05PM Reported: 1/13/2009 11:51:31AM Liquid Visc: 0.7228 cp

Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 102 kCnts/s Analysis Temp: 35.0 °C

Reynolds Number: 0.30

	Cumulative		Cumulative				
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	Hîgh Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)		
300.0	14.1	8.5	20.00	1.0	0.0		
250.0	7.6	6.5	15.00	1.0	0.0		
200.0	4.3	3.2	10.00	0.9	0.0		
150.0	2.4	1.9	8.000	0.9	0.0		
100.0	1.5	0.9	6.000	0.9	0.0		
80.00	1.1	0.4	5.000	0.8	0.0		
60.00	1.1	0.0	4.000	0.8	0.1		
50.00	1.1	0.0	3.000	0.7	0.1		
40.00	1.1	0.0	2.000	0.7	0.0		
30.00	1.0	0.0	1.500	0.7	0.0		
25.00	1.0	0.0					

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 3

Sample ID: MP-14U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06J.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

 Test Number:
 1
 Analysis Type: High Speed(Adj)

 Analyzed:
 1/12/2009 4:18:05PM
 Run Time:
 0:05 hrs:min

 Reported:
 1/13/2009 11:51:31AM
 Sample Density:
 2.650 g/cm³

 Liquid Visc:
 0.7228 cp
 Liquid Density:
 0.9941 g/cm³

 Analysis Temp:
 35.0 °C
 Base/Full Scale:
 128 / 102 kCnts/s

Reynolds Number: 0.30

	Cumulative			Cumulative			
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Mass	Mass Frequency (Percent)		
	100.0			. ,			
9500	100.0	0.0	547.8	50.0	5.0		
9500	95.0	5.0	495.0	45.0	5.0		
1520	90.0	5.0	449.5	40.0	5.0		
1222	85.0	5.0	410.5	35.0	5.0		
1052	80.0	5.0	375.8	30.0	5.0		
931.0	75.0	5.0	343.9	25.0	5.0		
831.3	70.0	5.0	314.0	20.0	5.0		
746.1	65.0	5.0	284.9	15.0	5.0		
671.9	60.0	5.0	255.5	10.0	5.0		
606.4	55.0	5.0	221.6	5.0	5.0		

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 4

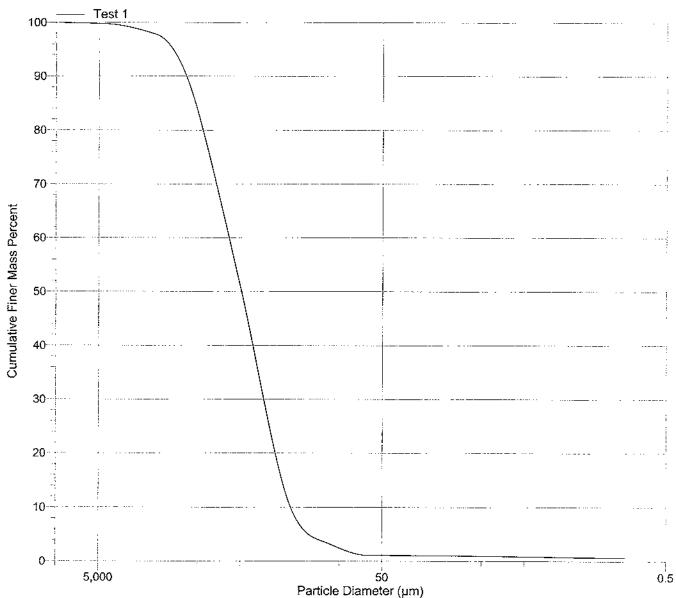
Sample ID: MP-14U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06J.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction


Test Number: 1

Analyzed: 1/12/2009 4:18:05PM Reported: 1/13/2009 11:51:31AM

Liquid Visc: 0.7228 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 102 kCnts/s

Reynolds Number: 0.30

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 1

Sample ID: MP-14L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06K.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1 Analyzed: 1/12/2009 4:39:13PM Reported: 1/13/2009 11:52:22AM

Liquid Visc: 0.7227 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 88 kCnts/s

Reynolds Number: 0.30

Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)
No. 4	4750.0	100.0	0.0	No. 60	250.0	77.5	6.8
No. 10	2000.0	95.5	4.5	No. 120	125.0	59.6	17.9
No. 18	1000.0	90.3	5.2	No. 230	63.0	45.4	14.2
No. 35	500.0	84.3	6.0	No. 635	20.0	38.5	6.9

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 2

Sample ID: MP-14L Operator: BR

> Client: Newfields Northwest File: C:\...\OF06\OF06K.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/12/2009 4:39:13PM Reported: 1/13/2009 11:52:22AM Liquid Visc: 0.7227 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs;min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 88 kCnts/s Reynolds Number: 0.30

	Cumulative		Cumulative				
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)		
300.0	77.5	2.1	20.00	36.0	2.5		
250.0	73.0	4.5	15.00	30.8	5.2		
200.0	64.5	8.4	10.00	28.1	2.7		
150.0	53.8	10.7	8.000	24.9	3.2		
100.0	48.4	5.4	6.000	23.0	1.9		
80.00	45.4	3.0	5.000	20.9	2.1		
60.00	45.1	0.3	4.000	18.7	2.2		
50.00	43.8	1.2	3.000	16.1	2.6		
40.00	42.0	1.9	2.000	14.4	1.7		
30.00	40.6	1.4	1.500	12.6	1.7		
25.00	38.5	2.1		. =	•••		

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: MP-14L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06K.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1 Analyzed: 1/12/2009 4:39:13PM Reported: 1/13/2009 11:52:22AM Liquid Visc: 0.7227 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 88 kCnts/s

Reynolds Number: 0.30

	Cumulative			Cumulative			
High Diameter	Mass Finer	Mass Frequency	High Diameter	Mass Finer	Mass Frequency		
(µm)	(Percent)	(Percent)	(μm)	(Percent)	(Percent)		
4750	100.0	0.0	104.5	50.0	5.0		
4750	95.0	5.0	85.98	45.0	5.0		
1864	90.0	5.0	48.94	40.0	5.0		
964.5	85.0	5.0	23.51	35.0	5.0		
541.6	80.0	5.0	13.74	30.0	5.0		
311.1	75.0	5.0	9.395	25.0	5.0		
217.4	70.0	5.0	6.065	20.0	5.0		
179.9	65.0	5.0	3.616	15.0	5.0		
152.3	60.0	5.0	1.679	10.0	5.0		
127.1	55.0	5.0					

SediGraph III V1.04 Unit 1 Serial Number: 399

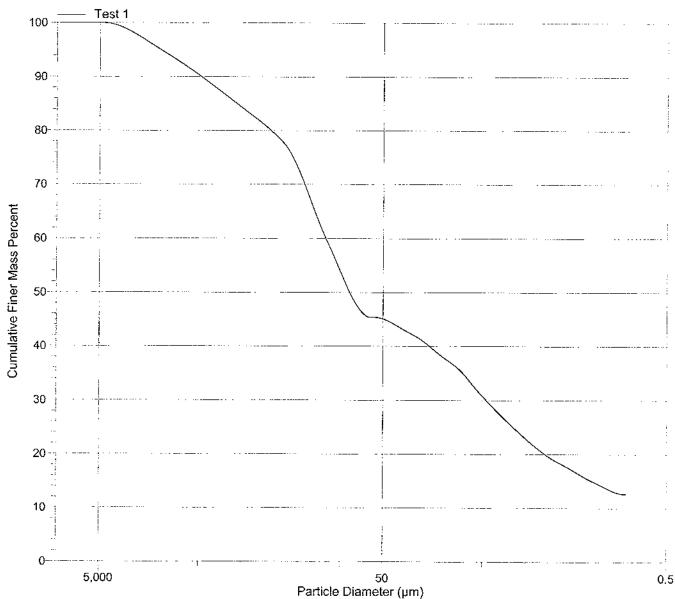
Sample ID: MP-14L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06K.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction


Test Number: 1

Analyzed: 1/12/2009 4:39:13PM Reported: 1/13/2009 11:52:22AM

Liquid Visc: 0.7227 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 88 kCnts/s

Page 4

Reynolds Number: 0.30

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 1

Sample ID: MP-15U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06L.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/13/2009 11:30:00AM Reported: 1/13/2009 11:54:17AM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 92 kCnts/s

Reynolds Number: 0.30

Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)
No. 4	4750.0	100.0	0.0	No. 60	250.0	79.3	14.1
No. 10	2000.0	99.4	0.6	No. 120	125.0	52.2	27.1
No. 18	1000.0	98.5	0.9	No. 230	63.0	34.7	17.5
No. 35	500.0	93.4	5.1	No. 635	20.0	30.2	4.5

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 2

Sample ID: MP-15U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06L.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/13/2009 11:30:00AM Reported: 1/13/2009 11:54:17AM Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 92 kCnts/s

Reynolds Number: 0.30

	Cumulative		Cumulative				
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)		
300.0	79.3	5.0	20.00	28.4	1.8		
250.0	71.3	8.0	15.00	25.6	2.9		
200.0	59.1	12.2	10.00	24.1	1.5		
150.0	44.5	14.6	8.000	22.1	2.0		
100.0	37.8	6.7	6.000	20.9	1.2		
80.00	34.7	3.1	5.000	19.6	1.2		
60.00	34.6	0.1	4.000	18.2	1,4		
50.00	34.1	0.5	3.000	15.4	2.8		
40.00	32.8	1.3	2.000	9.4	6.1		
30.00	31.7	1.0	1.500	4.4	5.0		
25.00	30.2	1.5					

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: MP-15U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06L.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/13/2009 11:30:00AM Reported: 1/13/2009 11:54:17AM Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 92 kCnts/s
Reynolds Number: 0.30

Cumulative			Cumulative			
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	
4750	100.0	0.0	135.2	50.0	5.0	
4750	95.0	5.0	117.2	45.0	5.0	
584.3	90.0	5.0	101.6	40.0	5.0	
392.8	85.0	5.0	86.89	35.0	5.0	
309.1	80.0	5.0	67.46	30.0	5.0	
256.1	75.0	5.0	19.40	25.0	5.0	
220.0	70.0	5.0	9.182	20.0	5.0	
193.9	65.0	5.0	4.316	15.0	5.0	
172.4	60.0	5.0	1.936	10.0	5.0	
153.3	55.0	5.0	1.537	5.0	5.0	

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 4

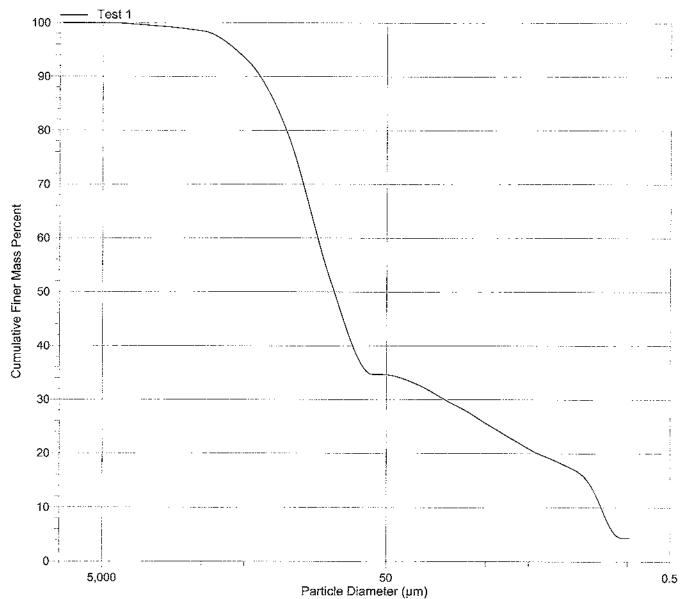
Sample ID: MP-15U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06L.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction


Test Number: 1

Analyzed: 1/13/2009 11:30:00AM Reported: 1/13/2009 11:54:17AM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 92 kCnts/s

Reynolds Number: 0.30

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 1

> Sample ID: MP-15L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06M.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/13/2009 11:52:27AM Reported: 1/13/2009 12:01:07PM Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 113 kCnts/s

Reynolds Number: 0.30

Sieve Name	Aperture Size (μm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)
5/8 in.	16000.0	100.0	0.0	No. 60	250.0	4.8	19.4
No. 4	4750.0	91.7	8.3	No. 120	125.0	1.0	3.8
No. 10	2000.0	74. 9	16.8	No. 230	63.0	0.5	0.5
No. 18	1000.0	50.0	24.9	No. 635	20.0	0.5	0.0
No. 35	500.0	24.2	25.8				

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 2

Sample ID: MP-15L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06M.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/13/2009 11:52:27AM Reported: 1/13/2009 12:01:07PM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³ Base/Full Scale: 128 / 113 kCnts/s

Reynolds Number: 0.30

Cumulative			Cumulative			
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (μm)	Mass Finer (Percent)	Mass Frequency (Percent)	
300.0	4.8	3.3	20.00	0.5	0.0	
250.0	2.6	2.2	15.00	0.5	0.0	
200.0	1.3	1.3	10.00	0.5	0.0	
150.0	8.0	0.5	8.000	0.5	0.0	
100.0	0.6	0.2	6.000	0.5	0.0	
80.00	0.5	0.1	5.000	0.5	0.0	
60.00	0.5	0.0	4.000	0.5	0.0	
50.00	0.5	0.0	3.000	0.5	0.0	
40.00	0.5	0.0	2.000	0.4	0.0	
30.00	0.5	0.0	1.500	0.5	0.0	
25.00	0.5	0.0				

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: MP-15L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06M.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/13/2009 11:52:27AM Reported: 1/13/2009 12:01:07PM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³ Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 113 kCnts/s

Reynolds Number: 0.30

Report by Mass Percent

High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
9500	100.0	0.0	1145	50.0	5.0
9500	95.0	5.0	1000	45.0	5.0
6257	90.0	5.0	873.6	40.0	5.0
4136	85.0	5.0	764.1	35.0	5.0
2978	80.0	5.0	668.6	30.0	5.0
2376	75.0	5.0	584.9	25.0	5.0
2006	70.0	5.0	511.0	20.0	5.0
1733	65.0	5.0	445.1	15.0	5.0
1506	60.0	5.0	384.0	10.0	5.0
1312	55.0	5.0	323.8	5.0	5.0

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 4

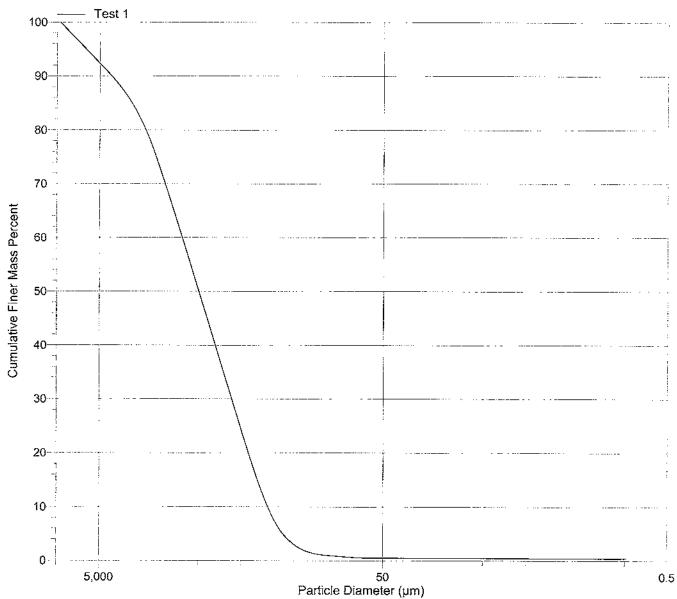
Sample ID: MP-15L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06M.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction


Test Number: 1

Analyzed: 1/13/2009 11:52:27AM Reported: 1/13/2009 12:01:07PM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³

Base/Full Scale: 128 / 113 kCnts/s Reynolds Number: 0.30

Cumulative Finer Mass Percent vs. Diameter

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 1

Sample ID: MP-16U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06N.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/13/2009 12:15:48PM Reported: 1/13/2009 12:24:56PM Liquid Visc: 0.7229 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 81 kCnts/s

Reynolds Number: 0.30

Report by Sieve Size

Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Cumulative Mass Passed (Percent)	Mass Frequency (Percent)
No. 4 No. 10 No. 18	4750.0 2000.0 1000.0	100.0 99.9 98.5	0.0 0.1 1.4	No. 60 No. 120 No. 230	250.0 125.0 63.0	70.4 31.7 5.1	18.4 38.7 26.6
No. 35	500.0	88.8	9.7	No. 635	20.0	4.5	0.6

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 2

Sample ID: MP-16U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06N.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1
 Analyzed: 1/13/2009 12:15:48PM
 Reported: 1/13/2009 12:24:56PM
 Liquid Visc: 0.7229 cp
Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 81 kCnts/s

Reynolds Number: 0.30

Report by Size Table

High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter (µm)	Cumulative Mass Finer (Percent)	Mass Frequency (Percent)
300.0	70.4	6.4	20.00	4.4	0.1
250.0	59.3	11.1	15.00	4.1	0.3
200.0	41.8	17.6	10.00	3.9	0.2
150.0	20.2	21.6	8.000	3.6	0.3
100.0	9.9	10.2	6.000	3.3	0.3
80.00	5.1	4.8	5.000	2.7	0.6
60.00	5.1	0.0	4.000	1.4	1.3
50.00	5.0	0.1	3.000	1.1	0.4
40.00	4.8	0.2	2.000	1.1	0.0
30.00	4.6	0.2	1.500	1.0	0.1
25.00	4.5	0.1			

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 3

Sample ID: MP-16U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06N.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1 Analysis Type: High Speed(Adj)
Analyzed: 1/13/2009 12:15:48PM Run Time: 0:05 hrs:min
Reported: 1/13/2009 12:24:56PM Sample Density: 2.650 g/cm³

 Reported: 1/13/2009 12:24:56PM
 Sample Density: 2.650 g/cm³

 Liquid Visc: 0.7229 cp
 Liquid Density: 0.9941 g/cm³

 Analysis Temp: 35.0 °C
 Base/Full Scale: 128 / 81 kCnts/s

Reynolds Number: 0.30

Report by Mass Percent

	Cumulative			Cumulative	
High	Mass	Mass	High	Mass	Mass
Diameter	Finer	Frequency	Diameter	Finer	Frequency
(µm)	(Percent)	(Percent)	(µm)	(Percent)	(Percent)
4750	100.0	0.0	186.0	50.0	5.0
4750	9 5.0	5.0	171.5	45.0	5.0
713.2	90.0	5.0	158.2	40.0	5.0
534.7	85.0	5.0	145.7	35.0	5.0
411.2	80.0	5.0	133.3	30.0	5.0
334.8	75.0	5.0	120.8	25.0	5.0
283.9	70.0	5.0	109.7	20.0	5.0
247.5	65.0	5.0	99.69	15.0	5.0
221.9	60.0	5.0	90.16	10.0	5.0
202.4	55.0	5.0	80.15	5.0	5.0

SediGraph III V1.04

Unit 1

Serial Number: 399

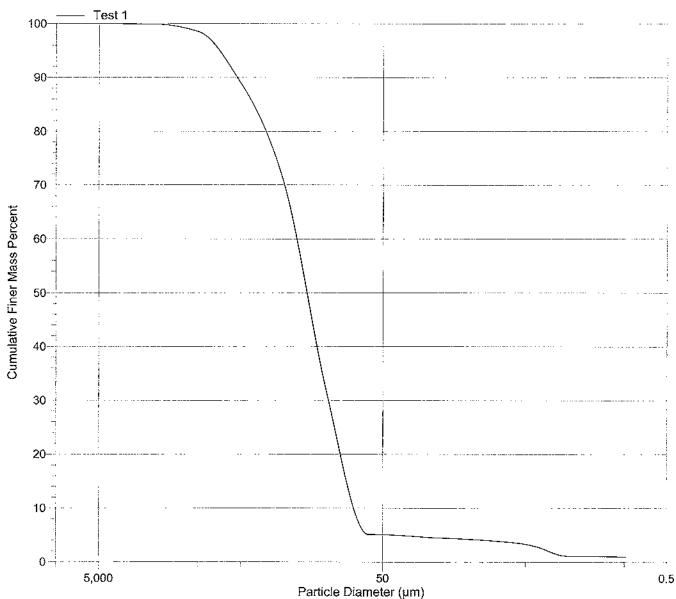
Page 4

Sample ID: MP-16U Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06N.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation


Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/13/2009 12:15:48PM Reported: 1/13/2009 12:24:56PM Liquid Visc: 0.7229 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 81 kCnts/s

Reynolds Number: 0.30

Cumulative Finer Mass Percent vs. Diameter

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 1

Sample ID: MP-16L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06O.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 4:28:52PM Reported: 1/13/2009 12:25:51PM Liquid Visc: 0.7230 cp

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 103 kCnts/s

Reynolds Number: 0.30

Report by Sieve Size

		Cumulative			Cumulative			
Sieve Name	Aperture Size (μm)	Mass Passed (Percent)	Mass Frequency (Percent)	Sieve Name	Aperture Size (µm)	Mass Passed (Percent)	Mass Frequency (Percent)	
5/8 in.	16000.0	100.0	0.0	No. 60	250.0	93.9	1.8	
No. 4	4750.0	99.6	0.4	No. 120	125.0	93.5	0.4	
No. 10	2000.0	99.3	0.2	No. 230	63.0	93.3	0.2	
No. 18	1000.0	98.3	1.1	No. 635	20.0	72.0	21.4	
No. 35	500.0	95.8	2.5					

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 2

Sample ID: MP-16L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06O.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1
 Analyzed: 1/9/2009 4:28:52PM
 Reported: 1/13/2009 12:25:51PM
 Liquid Visc: 0.7230 cp
Analysis Temp: 35.0 °C

Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 103 kCnts/s

Reynolds Number: 0.30

Report by Size Table

	Cumulative			Cumulative	
High Diameter (µm)	Mass Finer (Percent)	Mass Frequency (Percent)	High Diameter	Mass Finer (Porgent)	Mass Frequency
(μπ)	(reident)	(Feicent)	(µm)	(Percent)	(Percent)
300.0	93.9	0.3	20.00	71.5	0.5
250.0	93.7	0.2	15.00	62.0	9.5
200.0	93.6	0.2	10.00	56.8	5.2
150.0	93.5	0.1	8.000	50.1	6.7
100.0	93.4	0.1	6.000	46.1	4.0
80.00	93.3	0.1	5.000	39.9	6.2
60.00	92.3	1.0	4.000	29.9	10.0
50.00	86.2	6.1	3.000	18.2	11.7
40.00	78.7	7.5	2.000	6.6	11.6
30.00	76.8	1.9	1.500	0.0	6.6
25.00	72.0	4.8			

SediGraph III V1.04

Unit 1

Serial Number: 399

Page 3

Sample ID: MP-16L Operator: BR

Client: Newfields Northwest File: C:\...\OF06\OF06O.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction

Test Number: 1

Analyzed: 1/9/2009 4:28:52PM Reported: 1/13/2009 12:25:51PM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj) Run Time: 0:05 hrs:min

Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 103 kCnts/s

Reynolds Number: 0.30

Report by Mass Percent

	Cumulative			Cumulative	
Hìgh	Mass	Mass	High	Mass	Mass
Diameter	Finer	Frequency	Diameter	Finer	Frequency
(µm)	(Percent)	(Percent)	(µm)	(Percent)	(Percent)
9500	100.0	0.0	7.176	50.0	5.0
9500	95.0	5.0	5.983	45.0	5.0
393.4	90.0	5.0	4.720	40.0	5.0
44.61	85.0	5.0	4.011	35.0	5.0
38.82	80.0	5.0	3.486	30.0	5.0
33.35	75.0	5.0	3.012	25.0	5.0
23.15	70.0	5.0	2.552	20.0	5.0
13.37	65.0	5.0	2.096	15.0	5.0
10.94	60.0	5.0	1.861	10.0	5.0
9.381	55.0	5.0	1.660	5.0	5.0

SediGraph III V1.04 Unit 1 Serial Number: 399 Page 4

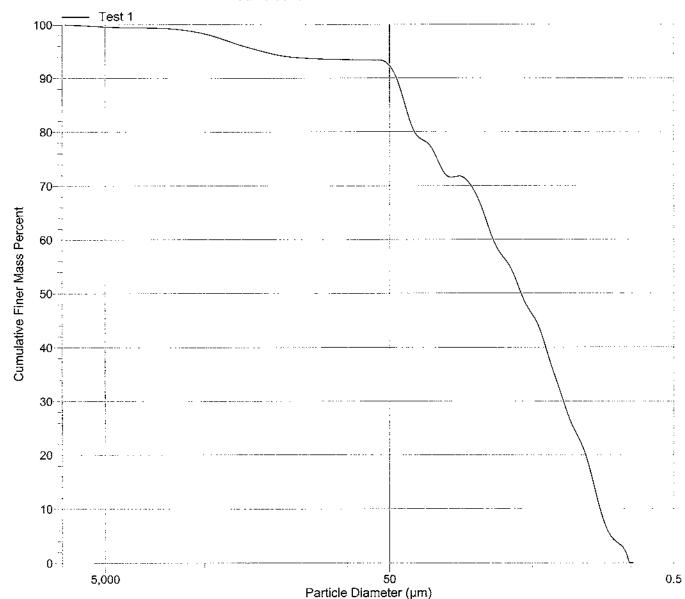
Sample ID: MP-16L Operator: BR

> Client: Newfields Northwest File: C:\...\OF06\OF06O.SMP

Material/Liquid: Sediment / Water

Measurement Principle: X-Ray monitored gravity sedimentation

Calculation Method: Stokes sedimentation and Beer's law of extinction


Test Number: 1

Analyzed: 1/9/2009 4:28:52PM Reported: 1/13/2009 12:25:51PM

Liquid Visc: 0.7230 cp Analysis Temp: 35.0 °C Analysis Type: High Speed(Adj)
Run Time: 0:05 hrs:min
Sample Density: 2.650 g/cm³
Liquid Density: 0.9941 g/cm³
Base/Full Scale: 128 / 103 kCnts/s

Reynolds Number: 0.30

Cumulative Finer Mass Percent vs. Diameter

Newfields Northwest Marina Park

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

	Γ	_							
Clay	10		<u>}</u>	7.6	7.8	6.9	3.7	5.8	5.0
Ö	φ.	2	2.00	15.1	15.3	14.5	4.9	7.5	6.9
	æ	000	08.5	26.7	26.5	26.3	6.1	9.0	8.7
alis.	7	4 80	7.80		44.8	43.7	7.4	10.9	10.6
	9	15 60	00.61	65.0	65.1	64.0	8.5	12.2	12.2
	9	00 40	31.00	2'98	0'98	81.8	9.3	12.6	13.1
Very Fine Sand	4	#230	(63)	95.2	96.3	90.3	6.6	12.9	13.2
Fine Sand	3	#120	(125)	8.96	97.9	93.3	25.5	15.2	23.6
Medium Sand	2	09#	(250)	£' <u>7</u> 6	98.4	94.4	51.2	20.6	45.4
Coarse	Į.	98#	(200)	0.86	0'66	95.5	69.5	39.1	64.8
Very Coarse Sand	0	#18	(1000)	99.1	966	97.8	86.8	9.69	83.4
	-1	#10	(2000)	8.66	66.66	100.0	92.9	92.5	91.8
Gravel	-2	7 #	(4750)	100.0	100.0	100.0	94.6	98.9	93.9
	-3	81%	0/0	100.0	100.0	100.0	100.0	100.0	100,0
Sample No.	Phi Size	Sieve Size	(microns)	WB-08-SS-010	WB-08-SS-010	WB-08-SS-010	MP10U COMP	MP14U COMP	MP12U COMP

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Newfields Northwest Marina Park

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

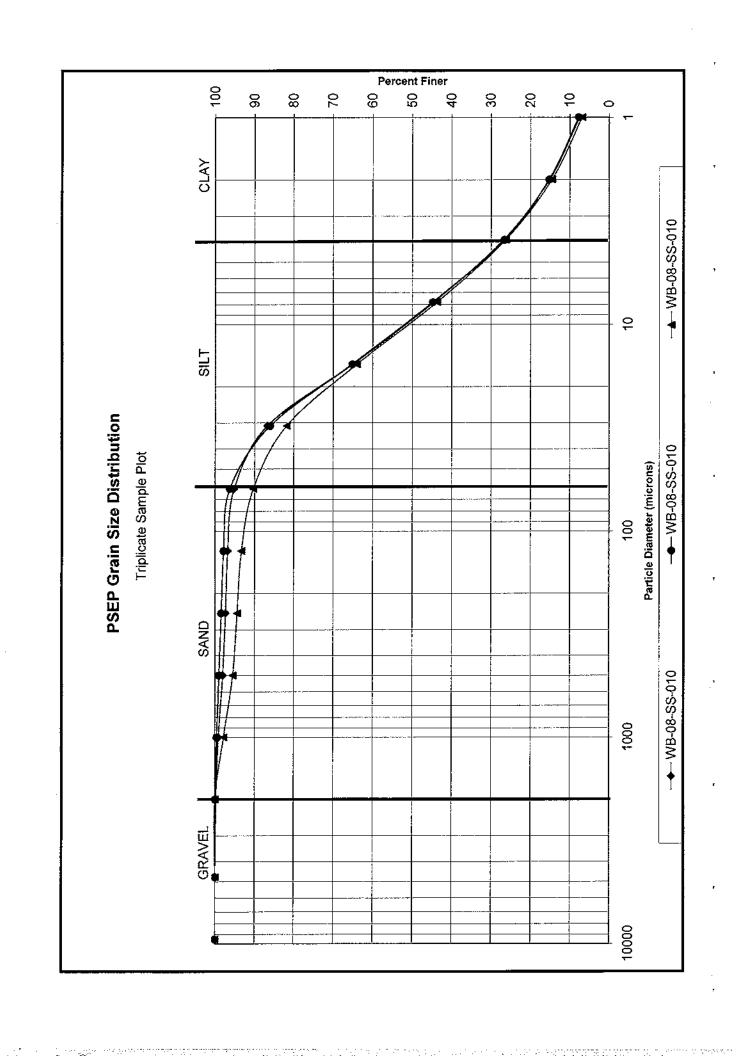
Total Fines	7 >	<230 (<62)	95.2	86.3	90.3	6.6	12.9	13.2
	< 10	¢1.0	7.6	7.8	6.9	3.7	5.8	5.0
Clay	9 to 10	2.0-1.0	7.5	7.5	7.7	1.2	1.8	1.9
	8 to 9	3.9-2.0	11.6	11.3	11.8	1.2	1.5	1.7
Very Fine Silt	7 to 8	7.8-3.9	17.9	18.2	17.4	1.3	1.9	2.0
Fine Silt	6 to 7	15.6-7.8	20.5	20.4	20.3	1.1	1.3	1.6
Medium Silt	5 to 6	31.0-15.6	21.6	20.8	17.8	9.0	0.5	0.8
Coarse Silt	4 to 5	62.5-31.0	8.5	10.3	8.5	0.7	0.3	0.1
Very Fine Sand	3 to 4	120-230 (125-62)	1.6	1.6	3.0	15.6	2.3	10.5
Fine Sand	2 to 3	60-120 (250-125)	9.0	9.0	1.1	25.7	5.4	21.8
Medium Sand	1 to 2	35-60 (500-250)	0.7	9.0	1.1	18.4	18.5	19.4
Coarse Sand	0 to 1	18-35 (1000-500)		9.0	2.3	17.2	30.5	18.5
Very Coarse Sand	-1 to 0	10 to 18 (2000-1000)	9.0	0.3	2.2	6.2	22.9	8.4
Gravel	>-1	>#10	0.2	0.1	0.0	7.1	7.5	8.2
Sample No.	Phi Size	Sieve Size (microns)	WB-08-SS-010	WB-08-SS-010	WB-08-SS-010	MP10U COMP	MP14U COMP	MP12U COMP

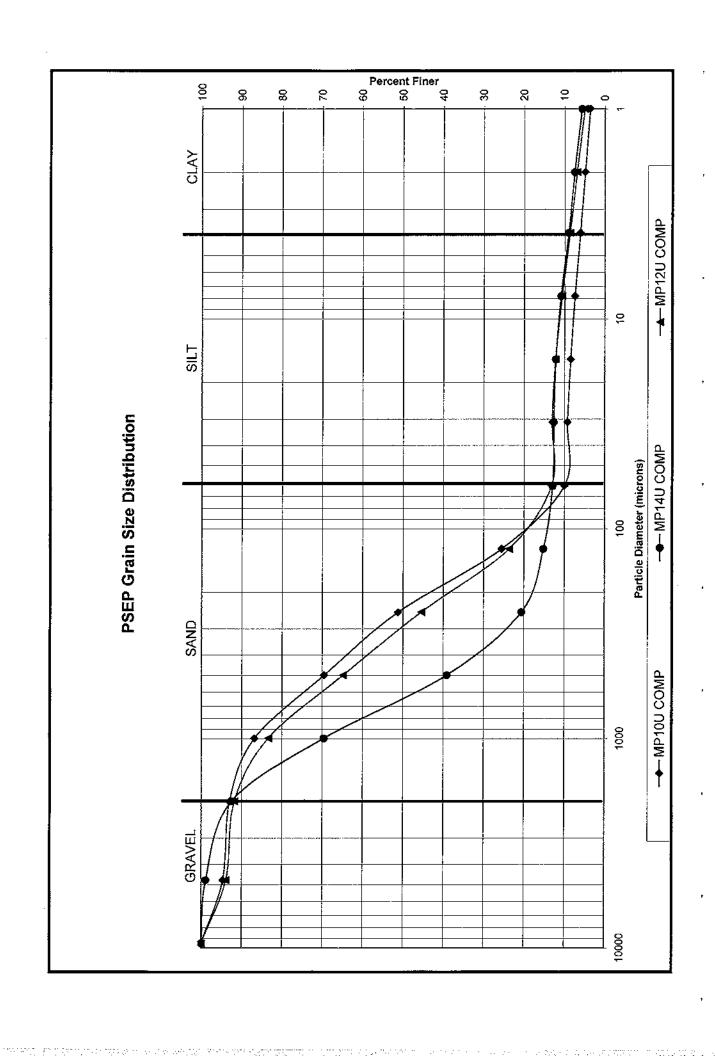
Notes to the Testing:
1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Marina Park 0668-1 1 of 1 Batch No.: Page: Project No.: Newfields Northwest WB-08-SS-010 OG52I ARI Trip. Sample ID: Client Trip. Sample ID:

Relative Standard Deviation, By Phi Size

	10	7.6	7.8	6.9	7.41	0.47	6.32
	6	15.1	15.3	14.5	14.98	0.39	2.57
	8	26.7	26.5	26.3	26.52	0.22	0.82
	2	9.44	44.8	43.7	44.36	0.55	1.25
	9	0.59	65.1	64.0	64.73	0.64	1.00
מלכם	5	86.7	86.0	81.8	84.82	2.65	3.13
i, Dy Fill G	4	95.2	86.3	90.3	93.91	3.16	3.36
Delative Statical Deviation, by Fill Size	က	8.96	97.9	93.3	88.38	2.38	2.48
ישוואם כופוור	2	97.3	98.4	94.4	96.71	2.09	2.16
ב ב	1	98.0	0.66	95.5	97.51	1.82	1.87
	0	1.66	9.66	97.8	98.86	0.92	0.93
	١٠	8.66	666	100.0	99.90	0.13	0.13
	-2	100.0	100.0	100.0	100.00	00.0	00.0
	ņ	100.0	100.0	100.0	٧N	NA.	٧N
	Sample ID	WB-08-SS-010	WB-08-SS-010	WB-08-SS-010	AVE	STDEV	%RSD


The Triplicate Applies To The Following Samples


Pipette Portion (5.0- 25.0g)	9.3	6.6	9.0	8.8	5.9	10.3
Data Qualifiers						
OA Ratio (95-105)	103.9	103.7	104.2	98.7	99.2	96.5
Date Complete	1/16/2009	1/16/2009	1/16/2009	1/22/2009	1/22/2009	1/22/2009
Date Extracted	1/14/2009	1/14/2009	1/14/2009	1/14/2009	1/14/2009	1/14/2009
Date Sampled	1/6/2009	1/6/2009	1/6/2009	12/11/2008	12/11/2008	12/11/2008
Client ID	WB-08-SS-010	WB-08-SS-010	WB-08-SS-010	MP10U COMP	MP14U COMP	MP12U COMP

* ARI Internal QA limits = 95-105%

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

SAMPLE RESULTS-CONVENTIONALS OF06-Newfields Northwest

Matrix: Sediment

Data Release Authorized N Reported: 01/09/09

Project: Marina Park

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Client ID: Comp CU ARI ID: 08-34190 OF06A

Analyte	Date	Method	Units	RL	Sample
Total Solids	12/23/08 122308#1	EPA 160.3	Percent	0.01	76.20
Total Organic Carbon	01/08/09 010809#1	Plumb, 1981	Percent	0.020	0.685
HEM Oil & Grease	01/07/09 0107 0 9#1	9071 B	mg/kg	262	< 262 U
HEM-ST NP Oil & Grease	01/07/09	9071 B	mg/kg	262	< 262 U
HEM Polar Oil & Grease	01/07/09	9071 B	mg/kg	262	< 262 U

RLAnalytical reporting limit U

Undetected at reported detection limit

SAMPLE RESULTS-CONVENTIONALS OF06-Newfields Northwest

Matrix: Sediment

Data Release Authorized W Reported: 01/09/09

Project: Marina Park

Event: NA
Date Sampled: 12/08/08
Date Received: 12/17/08

Client ID: Comp CL ARI ID: 08-34191 OF06B

Analyte	Date	Method	Units	RL	Sample
Total Solids	12/23/08 122308#1	EPA 160.3	Percent	0.01	87.40
Preserved Total Solids	12/23/08 122308#1	EPA 160.3	Percent	0.01	85.20
Sulfide	12/23/08 122308#1	EPA 376.2	mg/kg	1.18	7.09
Total Organic Carbon	01/08/09 010809#1	Plumb,1981	Percent	0.020	0.055
HEM Oil & Grease	01/07/09 010709#1	9071 B	mg/kg	221	< 221 U
HEM-ST NP Oil & Grease	01/07/09	9071 B	mg/kg	221	< 221 U
HEM Polar Oil & Grease	01/07/09	9071 B	mg/kg	221	< 221 U

Analytical reporting limit Undetected at reported detection limit RL

U

SAMPLE RESULTS-CONVENTIONALS OF06-Newfields Northwest

Matrix: Sediment
Data Release Authorized Nature Reported: 01/09/09

Project: Marina Park

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Client ID: LA-3 Ref ARI ID: 08-34192 OF06C

Analyte	Date	Method	Units	RL	Sample
Total Solids	12/23/08 122308#1	EPA 160.3	Percent	0.01	43.50
Total Organic Carbon	01/08/09 010809#1	Plumb, 1981	Percent	0.020	1.82
HEM Oil & Grease	01/07/09 010709#1	9071 B	mg/kg	450	< 450 U
HEM-ST NP Oil & Grease	01/07/09	9071 B	mg/kg	450	< 450 U
HEM Polar Oil & Grease	01/07/09	9071 В	mg/kg	450	< 450 U

RLAnalytical reporting limit

Undetected at reported detection limit U

METHOD BLANK RESULTS-CONVENTIONALS OF06-Newfields Northwest

Matrix: Sediment

Data Release Authorized: Reported: 01/09/09

Project: Marina Park

Event: NA

Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank
Total Solids	12/23/08	Percent	< 0.01 U
Preserved Total Solids	12/23/08	Percent	< 0.01 U
Sulfide	12/23/08	mg/kg	< 0.05 U
Total Organic Carbon	01/08/09	Percent	< 0.020 U
HEM Oil & Grease	01/07/09	mg/kg	< 200 U
HEM-ST NP Oil & Grease	01/07/09	mg/kg	< 200 U
HEM Polar Oil & Grease	01/07/09	mg/kg	< 200

LAB CONTROL RESULTS-CONVENTIONALS OF06-Newfields Northwest

Matrix: Sediment

Data Release Authorized MReported: 01/09/09

Project: Marina Park

Event: NA

Date Sampled: NA Date Received: NA

Analyte	Date	Units	LCS	Spike Added	Recovery
Sulfide	12/23/08	mg/kg	4.58	6.36	72.0%
Total Organic Carbon	01/08/09	Percent	0.468	0.500	93.6%

STANDARD REFERENCE RESULTS-CONVENTIONALS OF06-Newfields Northwest

Matrix: Sediment

Data Release Authorized: Reported: 01/09/09

Project: Marina Park Event: NA

Date Sampled: NA Date Received: NA

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
Total Organic Carbon NIST #8704	01/08/09	Percent	3.36	3.35	100.3%
HEM Oil & Grease Env. Exp. #104629	01/07/09	mg/kg	8,090	8,000	101.1%

REPLICATE RESULTS-CONVENTIONALS OF06-Newfields Northwest

Matrix: Sediment

Project: Marina Park

Data Release Authorized:

Reported: 01/09/09

Event: NA
Date Sampled: 12/08/08
Date Received: 12/17/08

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: OF06A Client ID:	Comp CU				
Total Solids	12/23/08	Percent	76.20	76.60 76.80	0.4%
Total Organic Carbon	01/08/09	Percent	0.685	0.684 0.682	0.2%
ARI ID: OF06B Client ID:	Comp CL				
Preserved Total Solids	12/23/08	Percent	85.20	85.20 85.00	0.1%
Sulfide	12/23/08	mg/kg	7.09	8.56	18.8%
HEM Oil & Grease	01/07/09	mg/kg	< 221	< 225 < 224	NА
HEM-ST NP Oil & Grease	01/07/09	mg/kg	< 221	< 225 < 224	AN

MS/MSD RESULTS-CONVENTIONALS OF06-Newfields Northwest

mg/kg

< 221

01/07/09

96.0%

Matrix: Sediment

Analyte

Sulfide

ARI ID: OF06B

HEM Oil & Grease

Data Release Authorized:

Reported: 01/09/09

Project: Marina Park

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Date Units Sample Spike Added Recovery

Client ID: Comp CL

12/23/08 mg/kg 7.09 125 141 83.6%

8,670

9,030

TOTAL METALS

Page 1 of 1

Lab Sample ID: OF06A

LIMS ID: 08-34190 Matrix: Sediment

Data Release Authorized Reported: 01/08/09

Percent Total Solids: 77.9%

Sample ID: Comp CU

SAMPLE

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

and the control of th

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	12/29/08	200.8	01/02/09	7440-38-2	Arsenic	0.2	3.7	
3050B	12/29/08	200.8	01/02/09	7440-43-9	Cadmium	0.2	0.4	
3050B	12/29/08	200.8	01/02/09	7440-47-3	Chromium	0.6	12.4	
3050B	12/29/08	200.8	01/02/09	7440-50-8	Copper	0.6	18.3	
3050B	12/29/08	200.8	01/02/09	7439-92-1	Lead	1	9	
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.05	0.36	
3050B	12/29/08	200.8	01/06/09	7440-02-0	Nickel	0.6	9.2	
3050B	12/29/08	200.8	01/02/09	7782-49-2	Selenium	0.6	0.6	U
3050B	12/29/08	200.8	01/02/09	7440-22-4	Silver	0.2	0.2	U
3050B	12/29/08	200.8	01/02/09	7440-66-6	Zinc	5	44	

TOTAL METALS

Page 1 of 1

Sample ID: Comp CU DUPLICATE

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Lab Sample ID: OF06A LIMS ID: 08-34190 Matrix: Sediment

Data Release Authorized: Reported: 01/08/09

MATRIX DUPLICATE QUALITY CONTROL REPORT

ogygo szerverente karalyolokalalos a karatolokulosoko a arekonormálikak erekki Etterátolokulok este elektrotok

	Analysis				Control	
Analyte	Method	Sample	Duplicate	RPD	Limit	Q
Arsenic	200.8	3.7	3.6	2.7%	+/- 20%	
Cadmium	200.8	0.4	0.2 U	66.7%	+/- 0.2	${f L}$
Chromium	200.8	12.4	12.1	2.4%	+/- 20%	
Copper	200.8	18.3	17.1	6.8%	+/- 20%	
Lead	200.8	9	9	0.0%	+/- 20%	
Mercury	7471A	0.36	0.72	66.7%	+/- 20%	*
Nickel	200.8	9.2	8.9	3.3%	+/- 20%	
Selenium	200.8	0.6 U	0.6 U	0.0%	+/- 0.6	L
Silver	200.8	0.2 U	0.2 U	0.0%	+/- 0.2	L
Zinc	200.8	44	40	9.5%	+/- 20%	

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit - Detection Limit

TOTAL METALS
Page 1 of 1

Sample ID: Comp CU
MATRIX SPIKE

Lab Sample ID: OF06A

LIMS ID: 08-34190 Matrix: Sediment

Data Release Authorized:
Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

MATRIX SPIKE QUALITY CONTROL REPORT

rangan ang managang kalabang kalabang kalaban da ang kalabang kala

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	200.8	3.7	32.8	31.3	93.0%	
Cadmium	200.8	0.4	28.6	31.3	90.1%	
Chromium	200.8	12.4	39.4	31.3	86.3%	
Copper	200.8	18.3	45.2	31.3	85.9%	
Lead	200.8	9	40	31.3	99.0%	
Mercury	7471A	0.36	0.94	0.510	114%	
Nickel	200.8	9.2	41.9	31.3	104%	
Selenium	200.8	0.6 U	93.7	100	93.7%	
Silver	200.8	0.2 U	16.2	31.3	51.8%	N
Zinc	200.8	44	142	100	98.0%	

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS

Page 1 of 1

Sample ID: LAB CONTROL

Lab Sample ID: OF06LCS

LIMS ID: 08-34191

Matrix: Sediment

Data Release Authorized:

Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: NA Date Received: NA

on the state of the authorities and the contract of the state of the s

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Arsenic	200.8	24.4	25.0	97.6%	
Cadmium	200.8	23.5	25.0	94.0%	
Chromium	200.8	24.8	25.0	99.2%	
Copper	200.8	23.1	25.0	92.4%	
Lead	200.8	26	25	104%	
Mercury	7471A	1.01	1.00	101%	
Nickel	200.8	26.8	25.0	107%	
Selenium	200.8	77.4	80.0	96.8%	
Silver	200.8	25.2	25.0	101%	
Zinc	200.8	78	80	97.5%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

TOTAL METALS Page 1 of 1 Sample ID: Comp CL

SAMPLE

Lab Sample ID: OF06B LIMS ID: 08-34191 Matrix: Sediment

QC Report No: OF06-Newfields Northwest Project: Marina Park

Data Release Authorized: Reported: 01/08/09

Date Sampled: 12/08/08 Date Received: 12/17/08

and the control of th

Percent Total Solids: 84.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
116 011	Date	11001100		0110 110110011	*******			×
3050B	12/29/08	200.8	01/02/09	7440-38-2	Arsenic	0.2	2.1	
3050B	12/29/08	200.8	01/02/09	7440-43-9	Cadmium	0.2	0.2	Ũ
3050B	12/29/08	200.8	01/02/09	7440-47-3	Chromium	0.6	2.8	
3050B	12/29/08	200.8	01/02/09	7440-50-8	Copper	0.6	1.2	
3050B	12/29/08	200.8	01/02/09	7439-92-1	Lead	1	1	U
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.05	0.05	U
3050B	12/29/08	200.8	01/06/09	7440-02-0	Nickel	0.6	1.9	
3050B	12/29/08	200.8	01/02/09	7782-49-2	Selenium	0.6	0.6	U
3050B	12/29/08	200.8	01/02/09	7440-22-4	Silver	0.2	0.2	U
3050B	12/29/08	200.8	01/02/09	7440-66-6	Zinc	5	6	

TOTAL METALS

Page 1 of 1

Sample ID: LA-3 Ref SAMPLE

Lab Sample ID: OF06C

LIMS ID: 08-34192

Matrix: Sediment
Data Release Authorized
Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

on the comparation of the first calculations is seen as a more of the first of the first and the comparation of the first of the first calculation of the comparation of the first of the f

Percent Total Solids: 44.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL:	mg/kg-dry	Q
3050B	12/29/08	200,8	01/02/09	7440-38-2	Arsenic	0.4	5.5	
3050B	12/29/08	200.8	01/02/09	7440-43-9	Cadmium	0.4	0.9	
3050B	12/29/08	200.8	01/02/09	7440-47-3	Chromium	1	40	
3050B	12/29/08	200.8	01/02/09	7440-50-8	Copper	1	22	
3050B	12/29/08	200.8	01/02/09	7439-92-1	Lead	2	13	
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.09	0.10	
3050B	12/29/08	200.8	01/07/09	7440-02-0	Nickel	1	24	
3050B	12/29/08	200.8	01/02/09	7782-49-2	Selenium	1	1	U
3050B	12/29/08	200.8	01/02/09	7440-22-4	Silver	0.4	0.4	U
3050B	12/29/08	200.8	01/02/09	7440-66-6	Zinc	8	83	

TOTAL METALS

Page 1 of 1

Sample ID: MP-10L

SAMPLE

Lab Sample ID: OF06E LIMS ID: 08-34194

Matrix: Sediment

Data Release Authorized Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Percent Total Solids: 61.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.06	0.06	Ü

ar on the contract of the cont

TOTAL METALS

Page 1 of 1

Sample ID: MP-12L

SAMPLE

Lab Sample ID: OF06G LIMS ID: 08-34196

Matrix: Sediment Data Release Authorized; Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Percent Total Solids: 59.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.06	0.07	

and the contribution of the transport of the contribution of the c

TOTAL METALS

Page 1 of 1

Sample ID: MP-13U

SAMPLE

Lab Sample ID: OF06H LIMS ID: 08-34197

Matrix: Sediment

Data Release Authorized Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Percent Total Solids: 76.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.05	1.11	

TOTAL METALS

Page 1 of 1

Sample ID: MP-13L

SAMPLE

Lab Sample ID: OF06I LIMS ID: 08-34198

Matrix: Sediment

Data Release Authorized Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Percent Total Solids: 85.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RI.	mg/kg-dry	Q
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.05	0.05	U

ALIANGEMENT DESTREAD DE ANTONIO DE LA CONTRACTION DE CONTRACTION DE CONTRACTION DE LA CONTRACTION DE LA CONTRACTION DE CONTRAC

TOTAL METALS

Page 1 of 1

sample ID: MP-140 L Mistabellia

SAMPLE

Lab Sample ID: OF06J LIMS ID: 08-34199

Matrix: Sediment

Data Release Authorized Reported: 01/08/09 QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Percent Total Solids: 84.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.06	0.06	υ

BUILDING CONTROL OF STREET AND A CONTROL OF STREET OF THE STREET OF STREET O

TOTAL METALS

Page 1 of 1

Sample ID: MP-15U

SAMPLE

Lab Sample ID: OF06L LIMS ID: 08-34201

Matrix: Sediment

Data Release Authorized Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Percent Total Solids: 61.1%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL:	mg/kg-dry	Q
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.06	3.35	

talintalisas and a region of the second of t

TOTAL METALS

Page 1 of 1

Sample ID: MP-15L

SAMPLE

Lab Sample ID: OF06M LIMS ID: 08-34202

Matrix: Sediment

Data Release Authorized Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Percent Total Solids: 90.8%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.05	0.05	U

CHARLES OF A SECOND CONTROL OF A SECOND CONTRO

TOTAL METALS

Page 1 of 1

Sample ID: MP-16U

SAMPLE

Lab Sample ID: OF06N LIMS ID: 08-34203

LIMS ID: 08-34203 Matrix: Sediment

Data Release Authorized

Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Percent Total Solids: 81.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.05	0.07	

AND DEFENDED TO A SECOND OF THE SECOND SECON

TOTAL METALS

Page 1 of 1

Sample ID: MP-16L

SAMPLE

Lab Sample ID: OF060 LIMS ID: 08-34204

Matrix: Sediment

Data Release Authorized Reported: 01/08/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Percent Total Solids: 86.9%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.05	0.05	U

and the second of the second o

TOTAL METALS

Page 1 of 1

Lab Sample ID: OF06MB

LIMS ID: 08-34191 Matrix: Sediment

Data Release Authorized;

Reported: 01/08/09

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: NA Date Received: NA

amining in the contraction of th

Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
3050B	12/29/08	200.8	01/02/09	7440-38-2	Arsenic	0.2	0.2	U
3050B	12/29/08	200.8	01/02/09	7440-43-9	Cadmium	0.2	0.2	U
3050B	12/29/08	200.8	01/02/09	7440-47-3	Chromium	0.5	0.5	U
3050B	12/29/08	200.8	01/02/09	7440-50-8	Copper	0.5	0.5	U
3050B	12/29/08	200.8	01/02/09	7439-92-1	Lead	1	1	U
CLP	12/29/08	7471A	12/31/08	7439-97-6	Mercury	0.05	0.05	U
3050B	12/29/08	200.8	01/06/09	7440-02-0	Nickel	0.5	0.5	U
3050B	12/29/08	200.8	01/02/09	7782-49-2	Selenium	0.5	0.5	U
3050B	12/29/08	200.8	01/02/09	7440-22-4	Silver	0.2	0.2	U
3050B	12/29/08	200.8	01/02/09	7440-66-6	Zinc	4	4	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OF06LCS

LIMS ID: 08-34191

Matrix: Sediment
Data Release Authorized

Reported: 01/08/09

Sample ID: LAB CONTROL

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: NA Date Received: NA

a programment of the contraction of the contraction

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	Q
Arsenic	200.8	24.4	25.0	97.6%	
Cadmium	200.8	23.5	25.0	94.0%	
Chromium	200.8	24.8	25.0	99.2%	
Copper	200.8	23.1	25.0	92.4%	
Lead	200.8	26	25	104%	
Mercury	7471A	1.01	1.00	101%	
Nickel	200.8	26.8	25.0	107%	
Selenium	200.8	77.4	80.0	96.8%	
Silver	200.8	25.2	25.0	101%	
Zinc	200.8	78	80	97.5%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Sample ID: MP10U COMP

SAMPLE

Lab Sample ID: OG68A

LIMS ID: 09-459 Matrix: Sediment

Data Release Authorized:

Reported: 01/19/09

QC Report No: OG68-Newfields Northwest

Project: MARINA PARK

Date Sampled: 12/11/08

Date Received: 01/07/09

Percent Total Solids: 78.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	01/13/09	7471A	01/16/09	7439-97-6	Mercury	0.06	0.10	

TOTAL METALS Page 1 of 1 Sample ID: MP10U COMP

DUPLICATE

Lab Sample ID: OG68A

LIMS ID: 09-459 Matrix: Sediment

Data Release Authorized: Reported: 01/19/09

QC Report No: OG68-Newfields Northwest Project: MARINA PARK

Date Sampled: 12/11/08 Date Received: 01/07/09

MATRIX DUPLICATE QUALITY CONTROL REPORT

	Analysis				Control		
Analyte	Method	Sample	Duplicate	RPD	Limit	Q	
	111071101101						
Mercury	7471A	0.10	0.11	9.5%	+/- 0.06	L	

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS
Page 1 of 1

Sample ID: MP10U COMP

MATRIX SPIKE

Lab Sample ID: OG68A

LIMS ID: 09-459 Matrix: Sediment

Data Release Authorized;

Reported: 01/19/09

QC Report No: OG68-Newfields Northwest

Project: MARINA PARK

Date Sampled: 12/11/08 Date Received: 01/07/09

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Mercury	7471A	0.10	0.55	0.570	78.9%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS

Page 1 of 1

Lab Sample ID: OG68B LIMS ID: 09-460 Matrix: Sediment

Data Release Authorized Reported: 01/19/09

Percent Total Solids: 78.3%

Sample ID: MP14U COMP

SAMPLE

QC Report No: OG68-Newfields Northwest Project: MARINA PARK

Date Sampled: 12/11/08 Date Received: 01/07/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	01/13/09	7471A	01/16/09	7439-97-6	Mercury	0.06	0.85	

TOTAL METALS

Page 1 of 1

Sample ID: MP12U COMP

SAMPLE

Lab Sample ID: OG68C

LIMS ID: 09-461 Matrix: Sediment

Data Release Authorized: Reported: 01/19/09

QC Report No: OG68-Newfields Northwest Project: MARINA PARK

Date Sampled: 12/11/08 Date Received: 01/07/09

Percent Total Solids: 80.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Ω
CLP	01/13/09	7 4 71A	01/16/09	7439-97-6	Mercury	0.05	0.31	

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OG68MB

LIMS ID: 09-460 Matrix: Sediment

Data Release Authorized: Reported: 01/19/09

Sample ID: METHOD BLANK

QC Report No: OG68-Newfields Northwest Project: MARINA PARK

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-dry	Q
CLP	01/13/09	7471A	01/16/09	7439-97-6	Mercury	0.05	0.05	υ

TOTAL METALS

Page 1 of 1

Lab Sample ID: OG68LCS

LIMS ID: 09-460 Matrix: Sediment

Data Release Authorized:

Reported: 01/19/09

Sample ID: LAB CONTROL

QC Report No: OG68-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Mercury	7471A	1.04	1.00	104%	

Reported in mg/kg-dry

N-Control limit not met NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

Page 1 of 1

Lab Sample ID: OG93A

LIMS ID: 09-609 Matrix: Sediment

Data Release Authorized:/

Reported: 01/12/09

Date Extracted: 01/09/09 Date Analyzed: 01/12/09 14:30 Instrument/Analyst: NT2/YZ

Silica Gel Cleanup: No

Sample ID: COMP CU SAMPLE

QC Report No: OG93-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 5.43 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

Moisture: 23.5%

CAS Number	Analyte	RL	Result	Q
TBT_ION DBT_ION BT_ION	Tributyltin Ion Dibutyltin Ion Butyltin Ion	3.6 5.3 3.8	< 3.6 < 5.3 < 3.8	Ū

Reported in $\mu g/kg$ (ppb)

TBT Surrogate Recovery

Tripropyl Tin Chloride 67.7% Tripentyl Tin Chloride 71.5%

Page 1 of 1

Sample ID: COMP CL

SAMPLE

Lab Sample ID: OG93B

LIMS ID: 09-610 Matrix: Sediment

Data Release Authorized:

Instrument/Analyst: NT2/YZ Silica Gel Cleanup: No

Date Analyzed: 01/12/09 15:28

Date Extracted: 01/09/09

Reported: 01/12/09

QC Report No: OG93-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 5.16 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

Moisture: 16.8%

CAS Number	Analyte	RL	Result	Q
TBT_ION DBT_ION BT_ION	Tributyltin Ion Dibutyltin Ion Butyltin Ion	3.7 5.6 4.0	< 3.7 < 5.6 < 4.0	

Reported in $\mu g/kg$ (ppb)

TBT Surrogate Recovery

Tripropyl Tin Chloride 83.7% Tripentyl Tin Chloride 84.6%

Page 1 of 1

Sample ID: LA-3 REF. SAMPLE

Lab Sample ID: OG93C

LIMS ID: 09-611 Matrix: Sediment

Data Release Authorized:

Reported: 01/12/09

Date Extracted: 01/09/09 Date Analyzed: 01/12/09 15:47 Instrument/Analyst: NT2/YZ Silica Gel Cleanup: No

QC Report No: OG93-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 5.15 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

Moisture: 54.6%

CAS Number	Analyte	RL	Result	Q
TBT ION	Tributyltin Ion	3.8	< 3.8	U
DBT ION	Dibutyltin Ion	5.6	< 5.6	U
BT_ION	Butyltin Ion	4.0	< 4.0	U

Reported in $\mu g/kg$ (ppb)

TBT Surrogate Recovery

Tripropyl Tin Chloride 74.5% Tripentyl Tin Chloride 81.0%

Page 1 of 1

Sample ID: COMP CU

MATRIX SPIKE

Lab Sample ID: OG93A

LIMS ID: 09-609

QC Report No: OG93-Newfields Northwest

Project: MARINA PARK

Matrix: Sediment Data Release Authorized:

Date Sampled: 12/08/08

Reported: 01/12/09

Date Received: 12/17/08

Date Extracted MS: 01/09/09

Sample Amount MS: 5.52 g-dry-wt

MSD: 5.55 g-dry-wt

Date Analyzed MS: 01/12/09 14:49

Final Extract Volume MS: 0.5 mL

MSD: 01/12/09 15:09 Instrument/Analyst MS: NT2/YZ

MSD: 0.5 mL

MSD: NT2/YZ

Dilution Factor MS: 1.00

MSD: 1.00

Silica Gel Cleanup: No

Alumina Cleanup: Yes

Moisture: 23.5%

Analyte	Sample	MS	Spike Added-MS	MS Recovery	MSD	Spike Added-MSD	MSD Recovery	RPD
Tributyltin Ion Dibutyltin Ion	< 3.6 U	33.9	40.4	83.9% 121%	41.8	40.2 34.6	104%	20.9% 18.8%
Butyltin Ion	< 3.8 U	22.3	28.3	78.8%	18.9	28.1	67.3%	16.5%

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

Sample ID: COMP CU MATRIX SPIKE

Lab Sample ID: OG93A

LIMS ID: 09-609 Matrix: Sediment

Data Release Authorized:

Silica Gel Cleanup: No

Reported: 01/12/09

Date Extracted: 01/09/09 Date Analyzed: 01/12/09 14:49 Instrument/Analyst: NT2/YZ QC Report No: OG93-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 5.52 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

Moisture: 23.5%

CAS Number	Analyte	RL	Result	Q
TBT_ION	Tributyltin Ion	3.5		
DBT_ION	Dibutyltin Ion	5.2		
BT_ION	Butyltin Ion	3.7		

Reported in $\mu g/kg$ (ppb)

TBT Surrogate Recovery

Tripropyl Tin Chloride 71.8% Tripentyl Tin Chloride 74.2%

Page 1 of 1

Sample ID: COMP CU

MATRIX SPIKE DUP

Lab Sample ID: OG93A

LIMS ID: 09-609 Matrix: Sediment

Data Release Authorized:

Date Extracted: 01/09/09 Date Analyzed: 01/12/09 15:09

Silica Gel Cleanup: No

Instrument/Analyst: NT2/YZ

Reported: 01/12/09

QC Report No: OG93-Newfields Northwest

Project: MARINA PARK

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 5.55 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

Moisture: 23.5%

CAS Number	Analyte	RL	Result (Q
TBT ION	Tributyltin Ion	3.5		
DBT ION	Dibutyltin Ion	5.2		
BT_ION	Butyltin Ion	3.7		

Reported in $\mu g/kg$ (ppb)

TBT Surrogate Recovery

Tripropyl Tin Chloride 74.2% Tripentyl Tin Chloride 75.4%

Lab Sample ID: MB-010909

LIMS ID: 09-609 Matrix: Sediment

Data Release Authorized:

Reported: 01/12/09

Date Extracted: 01/09/09 Date Analyzed: 01/12/09 13:51

Instrument/Analyst: NT2/YZ
Silica Gel Cleanup: No

Sample ID: MB-010909

METHOD BLANK

QC Report No: OG93-Newfields Northwest

Project: MARINA PARK

Event: NA Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Final Extract Volume: 0.50 mL Dilution Factor: 1.00 Alumina Cleanup: Yes

CAS Number	Analyte	RL	Result	Q
TBT_ION DBT_ION	Tributyltin Ion Dibutyltin Ion	3.9 5.8	< 3.9 < 5.8	Ü
BT_ION	Butyltin Ion	4.1	< 4.1	U

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	76.2%
Tripentyl			81.7%

Lab Sample ID: LCS-010909 LIMS ID: 09-609

Matrix: Sediment

Data Release Authorized:

Reported: 01/12/09

Date Extracted LCS: 01/09/09 Date Analyzed LCS: 01/12/09 14:11 Instrument/Analyst LCS: NT2/YZ

Silica Gel Cleanup: No

Sample ID: LCS-010909

LAB CONTROL SAMPLE

QC Report No: OG93-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

Sample Amount LCS: 5.00 g-dry-wt

Final Extract Volume LCS: 0.50 mL Dilution Factor LCS: 1.00 Alumina Cleanup: Yes

	Spike				
Analyte	LCS	Added	Recovery		
Tributyltin Ion	41.5	44.6	93.0%		
Dibutyltin Ion	33.5	38.4	87.2%		
Butyltin Ion	23.8	31.2	76.3%		

Reported in $\mu g/kg$ (ppb)

Tripropyl	Tin	Chloride	82.7%
Tripentyl	Tin	Chloride	96.4%

TBT SURROGATE RECOVERY SUMMARY

Matrix: Sediment QC Report No: OG93-Newfields Northwest

Project: MARINA PARK

Event: NA

Client ID	TPRT	TPNT	TOT OUT
MB-010909	76.2%	81.7%	0
LCS-010909	82.7%	96.4%	0
COMP CU	67.7%	71.5%	0
COMP CU MS	71.8%	74.2%	0
COMP CU MSD	74.2%	75.4%	0
COMP CL	83.7%	84.6%	0
LA-3 REF.	74.5%	81.0%	0

					LCS/MB LIMITS	OC FIMIA	rs.
(TPRT)	=	Tripropyl	Tin	Chloride	(30-160)	(30-160))
(TPNT)	=	Tripentyl	Tin	Chloride	(30-160)	(30-160))

Prep Method: SW3546 Analytical Method: TBT (Hexyl) Krone 1988 Log Number Range: 09-609 to 09-611

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Page 1 of 1

Sample ID: MB-123008 METHOD BLANK

Lab Sample ID: MB-123008

LIMS ID: 08-34190

Matrix: Sediment

Data Release Authorized: \

Reported: 01/05/09

Date Extracted: 12/30/08
Date Analyzed: 01/02/09 12:51
Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 ปั
11141-16-5	Aroclor 1232	20	< 20 ປັ

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	84.2%
Tetrachlorometaxylene	87.2%

Page 1 of 1

Lab Sample ID: OF06A LIMS ID: 08-34190

Matrix: Sediment

Data Release Authorized: \\

Reported: 01/05/09

Date Extracted: 12/30/08 Date Analyzed: 01/02/09 13:26 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: Comp CU SAMPLE

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 25.7 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: 22.6%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 Ü
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	76.5%
Tetrachlorometaxylene	86.8%

Page 1 of 1

Sample ID: Comp CL SAMPLE

Lab Sample ID: OF06B LIMS ID: 08-34191

Matrix: Sediment

Data Release Authorized: MW

Reported: 01/05/09

Date Sampled: 12/08/08 Date Received: 12/17/08

Project: Marina Park

Sample Amount: 25.9 g-dry-wt

QC Report No: OF06-Newfields Northwest

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 11.0%

Date Extracted: 12/30/08 Date Analyzed: 01/02/09 13:43

Instrument/Analyst: ECD5/JGR GPC Cleanup: No

Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	19	< 19 U
11097-69-1	Aroclor 1254	19	< 19 U
11096-82-5	Aroclor 1260	19	< 19 U
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	86.5%
Tetrachlorometaxylene	87.8%

Page 1 of 1

Sample ID: LA-3 Ref SAMPLE

Lab Sample ID: OF06C LIMS ID: 08-34192

Matrix: Sediment

Data Release Authorized: \\M

Reported: 01/05/09

Date Sampled: 12/08/08 Date Received: 12/17/08

Date Extracted: 12/30/08 Date Analyzed: 01/02/09 14:00 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample Amount: 25.6 g-dry-wt

QC Report No: OF06-Newfields Northwest

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: No

Project: Marina Park

Percent Moisture: 52.5%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 Ŭ
11141-16-5	Aroclor 1232	20	< 20 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	77.8%
Tetrachlorometaxylene	85.0%

SW8082/PCB SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

QC Report No: OF06-Newfields Northwest Project: Marina Park Matrix: Sediment

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
		•			
MB-123008	84.2%	65-117	87.2%	63-119	0
LCS-123008	86.5%	65-117	95.0%	63-119	0
Comp CU	76.5%	43-148	86.8%	48-123	0
Comp CL	86.5%	43-148	87.8%	48-123	0
LA-3 Ref	77.8%	43-148	85.0%	48-123	0

PSDDA Control Limits

Prep Method: SW3550B Log Number Range: 08-34190 to 08-34192

Page 1 of 1

Lab Sample ID: LCS-123008

LIMS ID: 08-34190

Matrix: Sediment

Data Release Authorized:

Reported: 01/05/09

Date Extracted: 12/30/08

Date Analyzed: 01/02/09 13:09 Instrument/Analyst: ECD5/JGR

GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: LCS-123008

LAB CONTROL

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g-dry-wt Final Extract Volume: 5.0 mL

Dilution Factor: 1.00

Silica Gel: No

Percent Moisture: NA

Analyte	Lab Control	Spike Added	Recovery
Aroclor 1016	93.1	100	93.1%
Aroclor 1260	88.4	100	88.4%

PCB Surrogate Recovery

Decachlorobiphenyl	86.5%
Tetrachlorometaxylene	95.0%

Results reported in $\mu g/kg$ (ppb)

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: OF06A LIMS ID: 08-34190 Matrix: Sediment

Data Release Authorized:

Reported: 01/08/09

Date Extracted: 12/30/08 Date Analyzed: 01/07/09 12:35 Instrument/Analyst: ECD4/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: Comp CU SAMPLE

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 5.0 mL
Dilution Factor: 1.00
Silica Gel: Yes

Percent Moisture: 22.6%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.98	< 0.98 U
319-85-7	beta-BHC	0.98	< 0.98 U
319-86-8	delta-BHC	0.98	< 0.98 U
58-89-9	gamma-BHC (Lindane)	0.98	< 0.98 U
76-44-8	Heptachlor	0.98	< 0.98 U
309-00-2	Aldrin	0.98	< 0.98 U
1024-57-3	Heptachlor Epoxide	0.98	< 0.98 U
959-98-8	Endosulfan I	0.98	< 0.98 Ü
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	9.8	< 9.8 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.98	< 0.98 Ŭ
5103-71-9	alpha Chlordane	0.98	< 0.98 U
8001-35-2	Toxaphene	98	< 98 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	80.5%
Tetrachlorometaxylene	68.2%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: OF06B LIMS ID: 08-34191

Matrix: Sediment
Data Release Authorized:

Reported: 01/08/09

Date Extracted: 12/30/08 Date Analyzed: 01/07/09 12:55 Instrument/Analyst: ECD4/AAR

GPC Cleanup: No

Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: Comp CL SAMPLE

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 26.6 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00

Silica Gel: Yes

Percent Moisture: 11.0%

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	0.94	< 0.94 U
319-85-7	beta-BHC	0.94	< 0.94 U
319-86-8	delta-BHC	0.94	< 0.94 U
58-89-9	gamma-BHC (Lindane)	0.94	< 0.94 U
76-44-8	Heptachlor	0.94	< 0.94 U
309-00-2	Aldrin	0.94	< 0.94 U
1024-57-3	Heptachlor Epoxide	0.94	< 0.94 U
959-98-8	Endosulfan I	0.94	< 0.94 U
60-57-1	Dieldrin	1.9	< 1.9 U
72-55-9	4,4'-DDE	1.9	< 1.9 U
72-20-8	Endrin	1.9	< 1.9 U
33213-65-9	Endosulfan II	1.9	< 1.9 U
72-54-8	4,4'-DDD	1.9	< 1.9 U
1031-07-8	Endosulfan Sulfate	1.9	< 1.9 U
50-29-3	4,4'-DDT	1.9	< 1.9 U
72-43-5	Methoxychlor	9.4	< 9.4 U
7421-93-4	Endrin Aldehyde	1.9	< 1.9 U
5103-74-2	gamma Chlordane	0.94	< 0.94 U
5103-71-9	alpha Chlordane	0.94	< 0.94 U
8001-35-2	Toxaphene	94	< 94 U
789-02-6	2,4'-DDT	1.9	< 1.9 U
3424-82-6	2,4'-DDE	1.9	< 1.9 U
53-19-0	2,4'-DDD	1.9	< 1.9 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	78.5%
Tetrachlorometaxylene	63.5%

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: OF06C LIMS ID: 08-34192

Matrix: Sediment

Data Release Authorized:

Reported: 01/08/09

Date Extracted: 12/30/08 Date Analyzed: 01/07/09 13:15 Instrument/Analyst: ECD4/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: LA-3 Ref SAMPLE

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 25.6 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 52.5%

CAS Number	Analyte	alyte RL Res	
 3 1 9-84-6	alpha-BHC	0.98	< 0.98 U
3 1 9-85 - 7	beta-BHC	0.98	< 0.98 U
319-86-8	delta-BHC	0.98	< 0.98 U
58-89 - 9	gamma-BHC (Lindane)	0.98	< 0.98 U
76-44-8	Heptachlor	0.98	< 0.98 U
309-00-2	Aldrin	0.98	< 0.98 U
1024-57-3	Heptachlor Epoxide	0.98	< 0.98 U
959-98-8	Endosulfan I	0.98	< 0.98 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	9.8	< 9.8 Ü
7421-93-4	Endrin Aldehyde	2.0	< 2.0 U
5103-74-2	gamma Chlordane	0.98	< 0.98 U
5103-71-9	alpha Chlordane	0.98	< 0.98 U
8001-35-2	Toxaphene	98	< 98 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	80.0%
Tetrachlorometaxylene	70.0%

SW8081 PESTICIDE SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

QC Report No: OF06-Newfields Northwest Project: Marina Park Matrix: Sediment

Client ID	DCBP	TCMX	TOT OUT
MB-123008	82.2%	73.5%	0
LCS-123008	83.8%	70.5%	0
Comp CU	80.5%	68.2%	0
Comp CL	78.5%	63.5%	0
LA-3 Ref	80.0%	70.0%	0

		LCS/MB LIMITS	QC LIMITS
, ,	<pre>= Decachlorobiphenyl = Tetrachlorometaxylene</pre>	(65-125) (53-112)	(52-143) (43-128)

Prep Method: SW3550B Log Number Range: 08-34190 to 08-34192

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Lab Sample ID: LCS-123008

Page 1 of 1

LIMS ID: 08-34190

Matrix: Sediment

Sample ID: LCS-123008

LAB CONTROL

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Reported: 01/08/09 Date Received: 12/17/08

Sample Amount: 25.0 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: NA

Date Extracted: 12/30/08
Date Analyzed: 01/07/09 12:14
Instrument/Analyst: ECD4/AAR

Data Release Authorized:

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No

Analyte	Lab Control	Spike Added	Recovery
alpha-BHC	3.12	4.00	78.0%
beta-BHC	3.30	4.00	82.5%
delta-BHC	3.52	4.00	88.0%
gamma-BHC (Lindane)	3.40	4.00	85.0%
Heptachlor	3.24	4.00	81.0%
Aldrin	3.46	4.00	86.5%
Heptachlor Epoxide	4.16	4.00	104%
Endosulfan I	3.74	4.00	93.5%
Dieldrin	7.62	8.00	95.2%
4,4 *-DDE	8.82	8.00	110%
Endrin	7.34	8.00	91.8%
Endosulfan II	7.94	8.00	99.2%
4,4'-DDD	7.64	8.00	95.5%
Endosulfan Sulfate	7.86	8.00	98.2%
4,4'-DDT	8.24	8.00	103%
Methoxychlor	39.6	40.0	99.0%
Endrin Aldehyde	5.08	8.00	63.5%
gamma Chlordane	4.02	4.00	100%
alpha Chlordane	4.08	4.00	102%

Pest/PCB Surrogate Recovery

* ****	
Decachlorobiphenyl	83.8%
Tetrachlorometaxylene	70.5%

Reported in $\mu g/kg$ (ppb)

ORGANICS ANALYSIS DATA SHEET PSDDA Pesticides/PCB by GC/ECD

Page 1 of 1

Lab Sample ID: MB-123008

LIMS ID: 08-34190 Matrix: Sediment

Data Release Authorized:

Reported: 01/08/09

Date Extracted: 12/30/08 Date Analyzed: 01/07/09 11:54 Instrument/Analyst: ECD4/AAR

GPC Cleanup: No Sulfur Cleanup: Yes Florisil Cleanup: No Acid Cleanup: No Sample ID: MB-123008

METHOD BLANK

OC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: NA Date Received: NA

Sample Amount: 25.0 g-dry-wt

Final Extract Volume: 5.0 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: NA

CAS Number	Analyte	RL	Result
319-84-6	alpha-BHC	1.0	< 1.0 U
319-85-7	beta-BHC	1.0	< 1.0 U
319-86-8	delta-BHC	1.0	< 1.0 U
58-89-9	gamma-BHC (Lindane)	1.0	< 1.0 U
76-44-8	Heptachlor	1.0	< 1.0 U
309-00-2	Aldrin	1.0	< 1.0 U
1024-57-3	Heptachlor Epoxide	1.0	< 1.0 U
959-98-8	Endosulfan I	1.0	< 1.0 U
60-57-1	Dieldrin	2.0	< 2.0 U
72-55-9	4,4'-DDE	2.0	< 2.0 U
72-20-8	Endrin	2.0	< 2.0 U
33213-65-9	Endosulfan II	2.0	< 2.0 U
72-54-8	4,4'-DDD	2.0	< 2.0 U
1031-07-8	Endosulfan Sulfate	2.0	< 2.0 U
50-29-3	4,4'-DDT	2.0	< 2.0 U
72-43-5	Methoxychlor	10	< 10 U
7421-93-4	Endrin Aldehyde	2.0	< 2.0 ບັ
5103-74-2	gamma Chlordane	1.0	< 1.0 U
5103-71-9	alpha Chlordane	1.0	< 1.0 U
8001-35-2	Toxaphene	100	< 100 U
789-02-6	2,4'-DDT	2.0	< 2.0 U
3424-82-6	2,4'-DDE	2.0	< 2.0 U
53-19-0	2,4'-DDD	2.0	< 2.0 U

Reported in $\mu g/kg$ (ppb)

Decachlorobiphenyl	82.2%
Tetrachlorometaxylene	73.5%

SIM SW8270 SURROGATE RECOVERY SUMMARY

QC Report No: OF06-Newfields Northwest Project: Marina Park Matrix: Sediment

Client ID	MNP	DBA	TOT OUT
MB-123008	67.7%	80.3%	0
LCS-123008	67.3%	82.7%	0
Comp CU	69.0%	79.7%	0
Comp CL	64.7%	81.3%	0
LA-3 Ref	71.7%	87.3%	0

			LCS/MB LIMITS	QC LIMITS
(MNP)	=	d10-2-Methylnaphthalene	(44-100)	(37-106)
(DBA)	=	dl4-Dibenzo(a,h)anthracene	(46-121)	(16-118)

Prep Method: SW3550B Log Number Range: 08-34190 to 08-34192

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: OF06A LIMS ID: 08-34190 Matrix: Sediment

Data Release Authorized:

Reported: 01/06/09

Date Extracted: 12/30/08 Date Analyzed: 01/03/09 18:23 Instrument/Analyst: NT1/YZ

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No

Sample ID: Comp CU SAMPLE

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 10.3 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Percent Moisture: 22.6%

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	4.8	< 4.8 U
86-73-7	Fluorene	4.8	< 4.8 U
85-01-8	Phenanthrene	4.8	< 4.8 U
120-12-7	Anthracene	4.8	< 4.8 U
206-44-0	Fluoranthene	4.8	15
129-00-0	Pyrene	4.8	19
56-55-3	Benzo(a) anthracene	4.8	6.3
218-01-9	Chrysene	4.8	7.8
205-99-2	Benzo(b) fluoranthene	4.8	12
50-32-8	Benzo(a)pyrene	4.8	16
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	12
53-70-3	Dibenz(a,h)anthracene	4.8	< 4.8 U
191-24-2	Benzo(g,h,i)perylene	4.8	20

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 69.0% d14-Dibenzo(a,h)anthracen 79.7%

ORGANICS ANALYSIS DATA SHEET PNAS by SW8270D-SIM GC/MS

Page 1 of 1

Lab Sample ID: OF06B

LIMS ID: 08-34191 Matrix: Sediment

Data Release Authorized:

Reported: 01/06/09

Date Extracted: 12/30/08 Date Analyzed: 01/03/09 18:48 Instrument/Analyst: NT1/YZ

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No Sample ID: Comp CL SAMPLE

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 11.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Percent Moisture: 11.0%

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	4.5	< 4.5 U
86-73-7	Fluorene	4.5	< 4.5 U
85-01-8	Phenanthrene	4.5	< 4.5 U
120-12-7	Anthracene	4.5	< 4.5 U
206-44-0	Fluoranthene	4.5	< 4.5 U
129-00-0	Pyrene	4.5	< 4.5 Ü
56-55-3	Benzo(a) anthracene	4.5	< 4.5 U
218-01-9	Chrysene	4.5	< 4.5 U
205-99-2	Benzo(b)fluoranthene	4.5	< 4.5 U
50-32-8	Benzo(a)pyrene	4.5	< 4.5 U
193-39-5	Indeno(1,2,3-cd)pyrene	4.5	< 4.5 U
53-70-3	Dibenz(a,h)anthracene	4.5	< 4.5 U
191-24-2	Benzo(g,h,i)perylene	4.5	< 4.5 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 64.7% d14-Dibenzo(a,h)anthracen 81.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: LA-3 Ref SAMPLE

Lab Sample ID: OF06C LIMS ID: 08-34192

Matrix: Sediment

Data Release Authorized: Reported: 01/06/09

Date Extracted: 12/30/08
Date Analyzed: 01/03/09 19:13
Instrument/Analyst: NT1/YZ

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No QC Report No: OF06-Newfields Northwest

Project: Marina Park

Event: NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 10.3 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 52.5%

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	4.8	< 4.8 U
86-73-7	Fluorene	4.8	< 4.8 U
85-01-8	Phenanthrene	4.8	< 4.8 U
120-12-7	Anthracene	4.8	< 4.8 U
206-44-0	Fluoranthene	4.8	8.7
129-00-0	Pyrene	4.8	11
56-55-3	Benzo(a) anthracene	4.8	< 4.8 U
218-01-9	Chrysene	4.8	5.8
205-99-2	Benzo(b) fluoranthene	4.8	5.3
50-32-8	Benzo(a)pyrene	4.8	5.3
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	< 4.8 U
53-70-3	Dibenz(a,h)anthracene	4.8	< 4.8 U
191-24-2	Benzo(g,h,i)perylene	4.8	4.8

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 71.7% d14-Dibenzo(a,h)anthracen 87.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

5

Lab Sample ID: MB-123008 LIMS ID: 08-34190 Matrix: Sediment

Data Release Authorized:

Reported: 01/06/09

Date Extracted: 12/30/08
Date Analyzed: 01/03/09 17:34
Instrument/Analyst: NT1/YZ

GPC Cleanup: No

Silica Gel Cleanup: Yes Alumina Cleanup: No Sample ID: MB-123008 METHOD BLANK

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Event: NA Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
83-32-9	Acenaphthene	5.0	< 5.0 U
86-73 -7	Fluorene	5.0	< 5.0 U
85-01-8	Phenanthrene	5.0	< 5.0 Ü
120-12-7	Anthracene	5.0	< 5.0 U
206-44-0	Fluoranthene	5.0	< 5.0 Ū
129-00-0	Pyrene	5.0	< 5.0 Ü
56-55-3	Benzo(a)anthracene	5.0	< 5.0 U
218-01-9	Chrysene	5.0	< 5.0 U
205-99-2	Benzo(b) fluoranthene	5.0	< 5.0 U
50-32-8	Benzo(a) pyrene	5.0	< 5.0 ປັ
193-39-5	Indeno(1,2,3-cd)pyrene	5.0	< 5.0 Ŭ
53-70-3	Dibenz(a,h)anthracene	5.0	< 5.0 U
191-24-2	Benzo(g,h,i)perylene	5.0	< 5.0 U

Reported in $\mu g/kg$ (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 67.7% d14-Dibenzo(a,h)anthracen 80.3%

ORGANICS ANALYSIS DATA SHEET PNAs by SW8270D-SIM GC/MS Page 1 of 1

Sample ID: LCS-123008

LAB CONTROL SAMPLE

Lab Sample ID: LCS-123008

LIMS ID: 08-34190 Matrix: Sediment

Data Release Authorized:

Date Extracted: 12/30/08

Date Analyzed LCS: 01/03/09 17:58

Instrument/Analyst LCS: NT1/YZ

Reported: 01/06/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Event: NA Sampled: NA

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 g-dry-wt

Final Extract Volume LCS: 0.50 mL Dilution Factor LCS: 1.00

Analyte	LCS	Spike Added	Recovery
Acenaphthene	108	150	72.0%
Fluorene	108	150	72.0%
Phenanthrene	114	150	76.0%
Anthracene	115	150	76.7%
Fluoranthene	134	150	89.3%
Pyrene	134	150	89.3%
Benzo(a)anthracene	132	150	88.0%
Chrysene	132	150	88.0%
Benzo(b) fluoranthene	128	150	85.3%
Benzo(a)pyrene	140	150	93.3%
Indeno(1,2,3-cd)pyrene	124	150	82.7%
Dibenz(a,h)anthracene	124	150	82.7%
Benzo(g,h,i)perylene	118	150	78.7%

Reported in µg/kg (ppb)

SIM Semivolatile Surrogate Recovery

d10-2-Methylnaphthalene 67.3% d14-Dibenzo(a,h)anthracen 82.7%

1 of 1 Page

Sample ID: Comp CU

SAMPLE

Lab Sample ID: OF06A LIMS ID: 08-34190

Matrix: Sediment

Data Release Authorized;

Reported: 01/06/09

Date Extracted: 12/30/08 Date Analyzed: 01/05/09 15:59 Instrument/Analyst: NT4/LJR

GPC Cleanup: No

QC Report No: OF06-Newfields Northwest

Project: Marina Park

NΑ

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 26.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 22.6%

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	19	< 19 U
84-66-2	Diethylphthalate	19	< 19 U
85-68-7	Butylbenzylphthalate	19	< 19 U
117-81-7	bis(2-Ethylhexyl)phthalate	19	< 19 U
117-84-0	Di-n-Octyl phthalate	19	< 19 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	68.4%
2-Fluorobiphenyl	76.0%
d14-p-Terphenyl	79.2%
d4-1.2-Dichlorobenzene	64.48

Page 1 of 1

Sample ID: Comp CL SAMPLE

Lab Sample ID: OF06B LIMS ID: 08-34191

Matrix: Sediment Data Release Authorized:

Reported: 01/06/09

QC Report No: OF06-Newfields Northwest

Project: Marina Park

NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 26.3 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 11.0%

Date	Extracted: 12/30/08
Date	Analyzed: 01/05/09 16:33
Inst	rument/Analyst: NT4/LJR
GPC	Cleanup: No

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	19	< 19 U
84-66-2	Diethylphthalate	19	< 19 U
85-68-7	Butylbenzylphthalate	19	< 19 U
117-81-7	bis(2-Ethylhexyl)phthalate	19	< 19 U
117-84-0	Di-n-Octyl phthalate	19	< 19 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	58.4%
2-Fluorobiphenyl	59.2%
d14-p-Terphenyl	68.8%
d4-1,2-Dichlorobenzene	45.6%

Page 1 of 1

Lab Sample ID: OF06C LIMS ID: 08-34192 Matrix: Sediment

Data Release Authorized:

Reported: 01/06/09

Date Extracted: 12/30/08 Date Analyzed: 01/05/09 17:07 Instrument/Analyst: NT4/LJR

GPC Cleanup: No

Sample ID: LA-3 Ref SAMPLE

QC Report No: OF06-Newfields Northwest

Project: Marina Park

NA

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 25.2 g-dry-wt

Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: 52.5%

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	54.8%
2-Fluorobiphenyl	62.4%
dl4-p-Terphenyl	66.0%
d4-1,2-Dichlorobenzene	50.4%

Page 1 of 1

Sample ID: MB-123008 METHOD BLANK

Lab Sample ID: MB-123008

QC Report No: OF06-Newfields Northwest

LIMS ID: 08-34190

Project: Marina Park

Matrix: Sediment

NA

Data Release Authorized: Reported: 01/06/09

Date Sampled: NA Date Received: NA

Date Extracted: 12/30/08 Date Analyzed: 01/05/09 14:52

Sample Amount: 25.0 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00

Instrument/Analyst: NT4/LJR GPC Cleanup: No

Percent Moisture: NA

CAS Number	Analyte	RL	Result
131-11-3	Dimethylphthalate	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U

Reported in µg/kg (ppb)

d5-Nitrobenzene	60.0%
2-Fluorobiphenyl	64.8%
d14-p-Terphenyl	83.2%
d4-1,2-Dichlorobenzene	58.0%

Page 1 of 1

Sample ID: LCS-123008

LAB CONTROL

Lab Sample ID: LCS-123008

LIMS ID: 08-34190 Matrix: Sediment

Data Release Authorized:

Reported: 01/06/09

Date Extracted: 12/30/08 Date Analyzed: 01/05/09 15:25 Instrument/Analyst: NT4/LJR

GPC Cleanup: NO

QC Report No: OF06-Newfields Northwest

Project: Marina Park

Date Sampled: 12/08/08 Date Received: 12/17/08

Sample Amount: 25.0 g Final Extract Volume: 0.5 mL Dilution Factor: 1.00 Percent Moisture: NA

Analyte	Lab Control	Spike Added	Recovery
Dimethylphthalate	400	500	80.0%
Diethylphthalate	427	500	85.4%
Butylbenzylphthalate	388	500	77.6%
bis(2-Ethylhexyl)phthalate	397	500	79.4%
Di-n-Octyl phthalate	401	500	80.2%

Semivolatile Surrogate Recovery

d5-Nitrobenzene	57.2%
2-Fluorobiphenyl	62.8%
d14-p-Terphenyl	74.0%
d4-1,2-Dichlorobenzene	50.4%

Results reported in $\mu g/kg$

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: OF06-Newfields Northwest Project: Marina Park

TUO T	TO	DCB	TPH	FBP	NBZ	Client ID
0	용	58.0%	83.2%	64.8%	60.0%	MB-123008
0	왕	50.4%	74.0%	62.8%	57.2%	LCS-123008
0	용	64.48	79.2%	76.0%	68. 4 %	Comp CU
0	8	45.68	68.8%	59.2%	58.4%	Comp CL
0	ક	50.4%	66.0%	62.4%	54.8%	LA-3 Ref
	. 15	50.44	66.03	62.48	54.88	LA-3 Rei

			LCS/MB LIMITS	QC LIMITS
(NBZ)	=	d5-Nitrobenzene	(37-85)	(29-87)
(FBP)		2-Fluorobiphenyl	(39-82)	(32-88)
(TPH)	=	d14-p-Terphenyl	(38-105)	(21-97)
(DCB)	=	d4-1,2-Dichlorobenzene	(33-79)	(25-82)

Prep Method: SW3550B Log Number Range: 08-34190 to 08-34192

Appendix C Benthic Toxicity Tests Data Sheets and Supporting Information

CLIENT

10 DAY SOLID PHASE TEST DATA

NEWFIELDS JOB NUMBER City of Newport Beach 1105-005-860 PROJECT MANAGER PROJECT Marina Park B. Gardiner NEWFIELDS LABORATORYDILUTION WATER BATCH
Port Gamble FSW121808.01 SPECIES Ampelisca abdida WATER QUALITY DATA TEST START DATE Port Gamble START TIME TEST START DATE 19Dec08 END TIME USEPA/USCOE 1991
TEST END DATE PROTOCOL 29Dec08

	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	CLIENT/NEWFIELDS ID		TEST CONDITIONS
	10	10	10	10	10	9	∞	7	ഗ	ڻ ت	4	ယ	N	-7	0	0	0	0	0	DAY		
	5	4	3	2		4	ω	N	>	ڻ.	4	3	2	→	5	4	ω	2		REP		
4					~	()	CM.	N	\mathcal{W}	W	W	B	v	7	\leftarrow	~			3	meter		1
	5.8	5,8	5,7	5.8	8.2	6.8	s, tr	6.2	6,6	6.8	8.9	6.8	6.9	7.2	5.6	6.3	5.9	6.4	5,3		> 4.6 D.O.	D.O. (ma/L)
·					W	C	W	W	M	W	W	Ŋ	W	2	\leftarrow				W	meter		ľ
) (190	19.1	19.1	19.6	19.1	186	19,3	19.4	19.4	19.4	19.5	19.5	19.4.	18.9	19.1	19.1	18.8	18.9		20 ± 1	TEMP (°C) SALINIT
	4				W	W	W	M	W	W	W	B	W	N	4	particonsister.	THE PROPERTY AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF TH	-	2	meter		S
	3/	28	31	31	3)	30	30	بو	29	w o	3/	30	30	es P	30 27	3027	8026	227	4208	ppt "	30 ± 2	ALINITY (ppt)
	4				W	W	W	W		W	S	W	W	3	1	ary partitions.		_	ξ.	meter		5
	8.4	8.4	8.4	8.5	8.5	8.0	8,0	7.7	2.	5.2	7,9	7.8	×. −	80	7.9	25	7.7	7,9	7.9		7.8±0.5	H (pH units)
1.21	4				1	ರ	4	map	8W6	7	44	MMB	MMB	ИSI	+				7		TECH.	
,	6			-	12/29	12/28	+2/2)	12/26	12/25	12/24	12-23	12/22	100	12/20	<				12/19		Date	

		DATA	WATER QUALITY DATA		
END TIME	ER BATCH START TIME 508.01	DILUTION WATER BATCH FSW121808.01	NEWFIELDS LABORATORY DILUTION WATER Port Gamble FSW12180	PROJECT MANAGER B. Gardiner	NEWFIELDS JOB NUMBER 1105-005-860
29Dec08	19Dec08	Port Gamble	Ampelisca abdida	Marina Park	City of Newport Beach
TEST END DATE	TEST START DATE	TEST START DATE	SPECIES	PROJECT	CLIENT
USEPA/USCOE 1991					
PROTOCOL					

	LA-3 Reference / 10	LA-3 Reference / 9	LA-3 Reference / 8	LA-3 Reference / 7	LA-3 Reference / 6	LA-3 Reference / 5	LA-3 Reference / 4	LA-3 Reference / 3	LA-3 Reference / 2	LA-3 Reference /	LA-3 Reference / 0	CLIENT/NEWFIELDS ID		TEST CONDITIONS								
	5	<u> </u>) 3	2		4	ω	N		υ	4	ω	2		ڻ ن	4	ω	N		REP		
ı	₩				3	()	(N)	CA	W	W	Ü	W	w	N	4				3	meter		
	8.3	4.5	5,8	5,9	6.0	7,0	かけ	6.8	6,4	6.8	6.8	6,9	۲ ه.	7.2	7.0	6.9	6.9	7,0	7.0		p.o.	D.O. (ma/L) > 4.6
	4	`			N	Ŋ	w	W	W	N	S	S	W	2	4				W	meter		
	19.1	19.2	/5.1	19.1	19.0	19.0	18,3	19.3	19.4	19.3	19,4	19.4	19.6	19.5	19.1	19.2	19.1	19.3	19.2	ိင	TEMP	TEMP (°C) 20 ± 1
\dashv					W	W	S	S	(7)	3	3	W	W	2	\forall			-	\sim	meter		Š
	38	33	34	35	3/5	33	33	32	W.	33	- 333	33 35	3 2	31	3/	3/	3/	3)	3/	ppt	SALINITY	SALINITY (ppt)
	4				W	W	W	W		W	W	W	W	Ŋ	4			,	W	meter		_
	8.3	8.3	9.3	8.3	8.4	った	8.0	% 4.	S	8.1	8. /	7.	2000	0.8	8.2	8.0	8.1	8.1	8.1		Hq	pH (pH units) 7.8 ± 0.5
	6	1				ね	H	mer	BWB	+	8P	NW R	MAN B	48	6				4		TECH.	
				· ` `	52/21	12/28	12/21	12/26	12/25	12/24	12/23	12/22	14141	12/20					(2/15)		Date	

Ac.

NEWFIELDS JOB NUMBER 1105-005-860 CLIENT City of Newport Beach PROJECT MANAGER PROJECT Marina Park B. Gardiner NEWFIELDS LABORATORYDILUTION WATER BATCH
Port Gamble FSW121808.01 SPECIES Ampelisca abdida TEST START DATE Port Gamble START TIME TEST START DATE 19Dec08 PROTOCOL END TIME USEPA/USCOE 1991 29Dec08

Comp C-U /	Comp C-U /	Comp C-U /	Comp C-U /	Comp C-U /	Comp C-U /	Comp C-U /	CLIEN I / NEW FIELDS ID		TEST CONDITIONS													
10	10	10	10	10	ဖ	œ	7	6	(h	4	ယ	2		0	0	0	0	0	DAY			
5	4.	ω	2		4	ω	N (.	<u> </u>	ζh	4	ω	2		ŲΊ	4	ω	N		# #			
				3	3	()	S	W	W	W	v	v	V	5				W	meter	-	Ö	
5.5	5.7	5.8	5.9	4,2	6.8	8.O	6.0	6.5	6.9	6,9	6.9	0.4	ダナ	7.1	7.2	0.5	7.1	7.1	mg/L	D.O.	D.O. (ma/L) >4.6	
6				W	W	Ŋ	ω	(V)	'n	W	W	Ø	n	4				N	meter	-		
19.1	19.2	19.1)9.1	19, 2	19.0	8.4)	19.3	19.4	19.3	19.5	િવ.5	19.6	19.4	19,1	19,2	19.3	19.1	19.2		TEMP	TEMP (°C) 20 ± 1	WAIER QUALITY DATA
4				W	77	W	W	(y.	V	W	w	w	3	*				\sim	meter		ý	֓֟֟֝֟֝֟֟֟֝֟֝֟֟֝֟֟֟֟֝֟֝֟֟֟֝֟֟֟֟֝֟֟֝֟֟֝֟֝֟֝
22	33	35	34	33	32	33	32	3	33	32	બ	3	72	3/	3	3/	3)	3)	ppt	SALINITY	SALINITY (ppt)	DATA
V			_	W	W	W	W		W	W	W	w	W	4				W	meter			
8.2	8,2	8.3	8.3	\$.3	80	8.0	ナギ	8,0	8,2	8, /	20,22	20	8.0	8.1	8,)	8.1	8.1	9.1		맞	pH (pH units) 7.8±0.5	
•				1	d	コ	pref	Sout-	7	R	NIME	MMB	H	/				4		TECH.		
4				12/29	12/28	±2/2)	12/26	12/25	12/24	12/23	(d/d)	1 9 9 -	12/20	4				12/19		Date	J	

CLIENT

10 DAY SOLID PHASE TEST DATA

NEWFIELDS JOB NUMBER City of Newport Beach 1105-005-860 PROJECT MANAGER PROJECT Marina Park B. Gardiner SPECIES NEWFIELDS LABORATORY DILUTION WATER BATCH Ampelisca abdida Port Gamble TEST START DATE FSW121808.01 Port Gamble START TIME TEST START DATE 19Dec08 END TIME USEPA/USCOE 1991 PROTOCOL 29Dec08

Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	CLIEN I/NEWFIELDS ID		TEST CONDITIONS	
10 5	10 4	10 3	10 2	10 1	9 4	φ	7 2	o	51	4	ω ω	2 2		0 5	0 4	0 3	0 2	0 1	VAT KEY	****		
	<u></u>			N	3	ω ω	S	(V)	W	- W	w	() ₃	W	1_				3	meter			
6.0	5.9	(.0	8.5	8.8	6.8	8.0	6.3	6.6	6.8	5.9	6.0	4,0	んど	7.0	6.9	0.7	70	7.0	ter mg/L	D.O.	D.O. (ma/L) > 4.6	
4			· ,	W	W	ယ	W	(Va	w	W	v	Q1	W	V				W	meter			
19.1	19.1	19.1	19.1	15.1	(9./	18.0	19,5	19.4	19.4	19.3	19.4	3.6	19.5	19.2	19.2	19.3	12.1	19.1		TEMP	TEMP (°C) 20 ± 1	WATER QUALITY DATA
6				2	W	W	S	W	w	W	W	ÇV	N	\lor		-		5	meter		Ş	Ę
35	33	33	34	34	33	33	32	3	32	32	S 2	o,	31	3/	3/	31/4-700	3)	3/	ppt	SALINITY	SALINITY (ppt) 30 ± 2	DATA
<				2	N	C3	W	_	W	W	W	W	B	*				5	meter		8	
8,2	8,2	8,2	8.3	8,3	Ф. О	8.0	8.7	8.0	8,2	8.1	P.2	8. 1	io,	8,1	8./	8./	8.1	8./		pН	pH (pH units) 7.8 ± 0.5	
•			, د	1	A	₩ ₩	mer	gw6	1	7	MINIE	MMB	RH	←				4		TECH.	!	
6			,	12/29	82/28	42/21	12/26	12/25	12/24	12-23	12/42	14/41	12/20	4				12/19		Date		

Client/Project:	Organism:	NewFields	Test ID:	Test Duration (days):
Newport Marina.P.	ark Ampelisca			
PRETES	T/INITIAL/FINAL/C OVERLYING (OV)	OTHER (circle one POREWATER (P	e) DAY of T W) (circle one	геst: <u>Ø</u>)
Cali	bration Standards Temp	erature		mperature should be
Date:	T	emperature:	within ±1	°C of standards
12/19/08		9	temperatu analysis.	are at time and date of

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sulf. mg/L
Control	sur.	12/19/08 CR	40.5	18.5	12/19/08 CR	N			
LA-3 Ref.			KO.5					***********************	
Comp. C-U			40,5						
LA-3 Ref. Comp.C-U Comp.C-L		V	40.5		V	V			

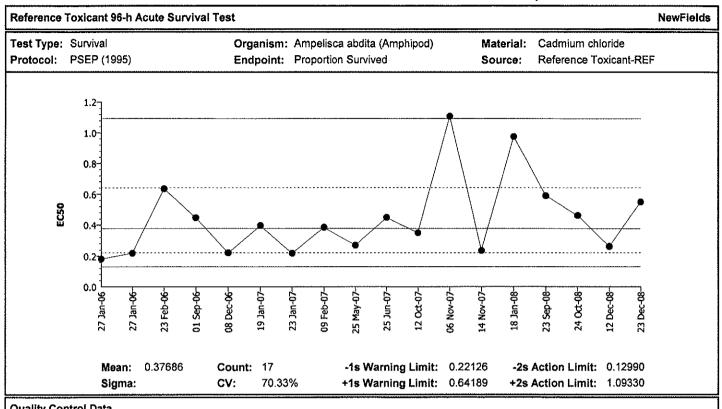
Page	O!	f

temperature at time and date of

analysis.

Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields '	Test ID:	Test Duration (days):
Newport/Marina Park	Ampelisca			
PRETEST	OVERLYING (OV)	OTHER (circle one POREWATER (P	e) DAY o W) (circle o	of TEST:
Calib	ration Standards Tem	perature	Sample	e temperature should be
Data	,	Tomporatura	within	+1°C of standards


Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sulf. mg/L
Control	Sun	12/19/08CR	1.04	19	12/19/08 CR	N			
Control LA-3 Ref Comp.C-U Comp.C-L			0.680						
Comp.C-1)			0.688 <0,5						
Como C-L	V	V	50,S		V	V			
									,

Comp C-L / 3			1 55	S	4	Comp C-U / 3	2		5	4	LA-3 Reference / 3	2	1	5	4	Control / 3	2	1 04 N	LIENT/ NEWFIELDS ID REP JAR INITIAL OBSERVINS.	BH	ORGANISMS	(fungal, bacterial, oralgal) D = No Air Flow (DO?) INITIAL # OF 20 00	#M = Number of Montality G = Growth DATE	#E = Emergence DAY 1		CLIENT PROJECT City of Newport Beach Marina Park	
	_										**************************************							7	NS. OBSERVNS.	SIMIN	N TECHNICIAN		DATE	1 DAY 2			
											1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							て	OBSERVNS.	AMM/A	TECHNICIAN	\mathcal{Y}	DATE	DAY 3	ENDPOINT (NEWFIELDS JOB NO. 1105-005-860	
-																		ð. ¹	OBSERVNS.	1	TECHNICIAN	22/24	DATE	DAY 4	ENDPOINT DATA & OBSERVATIONS		
																		Z	OBSERVNS.	ج	TECHNICIAN	(2/24)	DATE	DAY 5	ERVATIONS	PROJECT MAN. B. Gardiner	
	ح	て	て	M)	ح	て	て	Z	て	こ	7	IE/IM	て	2	ح.	- m	て	٦	OBSERVNS.	gwa gwa	أبسب	12/25	DATE	DAY 6		7	
>	E	2			2	2		2	2	2	<	2	ν	_	2	3	~	Ŋ	OBSERVNS.	N N	TECHNICIAN	12126		DAY 7		NEWFIELDS LAB Port Gamble Bath 7	
																		2	OBSERVNS.	$ \forall$	TECHNICIAN	7		DAY 8		PROTOCOL 7 USEPA/USCOE 1991	
~ ~					***************************************						**************************************						1	ح	OBSERVNS.	Ą	TECHNICIAN	12/28	DATE	DAY 9		E 1991	
j	\ ~			,,J	3	6									ス	/5	Z	18	OBSERVNS.	X-	TECHNICIAN	12/29	DATE	DAY 10		SPECIES Ampelisca abdida	
2	17	17	19		to	7 Charles	F	P	19	Ś	À	18	18	19	17	8	/%	/8	NUN	IBER	RE	MAIN	iing			bdida	

Report Date:

14 Jan-09 10:23 AM

Qualit	y Contr	ol Data								
Point	Year	Month	Day	Data	Delta	Sigma	Warning	Action	Test Link	Analysis
1	2006	Jan	27	0.18090	-0.19595	-1.37810	(-)		07-5435-8129	06-2014-1066
2			27	0.21846	-0.15839	-1.02383	(-)		02-3876-2955	12-1597-4541
3		Feb	23	0.63498	0.25812	0.97968			17-3687-3273	06-7672-2441
4		Sep	1	0.44694	0.07009	0.32029			11-8706-7493	01-2691-7469
5		Dec	8	0.22112	-0.15574	-1.00114	(-)		01-8163-5765	09-7294-9655
6	2007	Jan	19	0.39559	0.01873	0.09108			05-1919-0451	04-7876-6509
7			23	0.21727	-0.15958	-1.03411	(-)		13-4550-6899	02-3067-5161
8		Feb	9	0.38474	0.00788	0.03886			04-8872-6896	02-4257-0063
9		May	25	0.26923	-0.10763	-0.63150			16-5938-6055	08-1846-1770
10		Jun	25	0.44847	0.07161	0.32669			02-7818-3113	07-6434-4735
11		Oct	12	0.34850	-0.02835	-0.14687			07-2723-0368	03-4167-3848
12		Nov	6	1.10809	0.73124	2.02523	(+)	(+)	02-8822-1003	13-2266-5070
13			14	0.23515	-0.14171	-0.88567			10-0087-4493	11-2555-9069
14	2008	Jan	18	0.97369	0.59684	1.78244	(+)		16-7804-5373	13-2534-3341
15		Sep	23	0.58928	0.21243	0.83945			03-2847-7880	18-3138-3652
16		Oct	24	0.46182	0.08496	0.38176			14-6257-4714	01-6783-1439
17		Dec	12	0.26177	-0.11509	-0.68426			17-4134-1431	08-7847-9030
18			23	0.54863	0.17178	0.70522			21-3281-1872	04-2474-4340

Comparisons:

Page 1 of 1

14 Jan-09 10:11 AM 14-4952-5726

CETIS Analysis Detail

Report Date: Analysis:

Reference To: Endpoint	viaan											
Endnaint	AlÇalı	t 96-h Acu	te Surviva	al Test						<u></u>		NewFiel
Enuponit			Anal	lysis Type		Sample Li	nk Contro	i Link	Date A	nalyzed	Version	1
Proportion Sur	vived		Com	parison		21-3281-1	872 21-328 ⁻	1-1872	14 Jan	-09 10:11	AM CETISV	1.1.2
Method	***************************************		Alt i	H Data 1		Zeta	NOEL I	_OEL	Toxic	Units	ChV	PMSD
Dunnett's Mult	iple C	omparison	C >	T Angula	ar (Corrected)		0.25	0.5	400		0.35355	39.54%
Group Compa	vs Conc-mg/L er 0.125 0.25 0.5 1 le Sum of Sq 0.8975322 0.3239474 1.22147965 umptions Test Bartlett Shapiro-Wi ary Control Type C Dilution Water 3 3 3 3 3 CControl Type R		· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>	***************************************				
Control			/L	Statistic	Critical	P-Value	MSD		Decisio	n(0.05)		
Dilution Water				1.62492	2.46559	0.1793	0.36234			nificant Ef	fect	
		Control Type Cont		1.65966	2.46559	0.1708	0.36234		Non-Sig	nificant Ef	fect	
		0.5 1 Sum of Squ 0.8975322 0.3239474 1.22147965 nptions Test Bartlett Shapiro-Wilk / Control Type Co Dilution Water 3 3 3 3		3.0498	2.46559	0.0193	0.36234		Significa	nt Effect		
		1		4.97255	2.46559	0.0010	0.36234		Significa	int Effect		
ANOVA Table												
Source		Sum of	Squares	Mean Squa	are DF	F Statisti	c P-Value		Decisio	n(0.05)		
Between				0.2243831	4	6.93	0.00613			int Effect		
Error		0.323947	74	0.0323947	10							
Total		1.221479	365	0.2567778	14							
ANOVA Assur	nptio	ns										
Attribute	-				Statistic	Critical	P-Value		Decisio	n(0.01)		
Variances	Bartlett Shapiro-Wilk W				1.99337	13.27670	0.73698		Equal V			
Distribution	Bartlett Shapiro-Wilk W				0.94443		0.44135			Distributio	n	
Data Summar	Bartlett Shapiro-Wilk viary Control Type Cou				Origi	nal Data				Transfe	ormed Data	
Conc-mg/L	mary L Control Type Co Dilution Water 3			Mean	Minimum	Maximum	SD	Mean	· ·	Minimum	Maximum	SD
)	Shapiro-Wilk y Control Type Condition Water 3 3 3			0.80000	0.70000	1.00000	0.17321	1,131).99116	1.41202	0.24298
0.125				0.60000	0.50000	0.80000	0.17321	0.892		78540	1.10715	0.18576
0.25	Test Bartlett Shapiro-Wilk V Control Type Cou Dilution Water 3 3 3 3 3		3	0.60000	0.50000	0.70000	0.10000	0.887	54 (7.78540	0.99116	0.10289
0.5	Shapiro-Wilk W y Control Type Countrol Dilution Water 3 3 3 3 3			0.40000	0.30000	0.50000	0.10000	0.683	25 ().57964	0.78540	0.10289
1			3	0.16667	0.00000	0.30000	0.15275	0.400	69 ().15878	0.57964	0.21738
Data Detail												
Conc-mg/L	Cont	rol Type	Rep 1	Rep 2	Rep 3	Rep 4 R	ep 5 Rej	p 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Diluti	ion Water	0.70000	0.70000	1.00000							
0.125			0.50000	0.50000	0.80000							
0.25			0.50000	0.60000	0.70000							
0.5			0.50000	0.40000 0.30000	0.30000 0.00000							

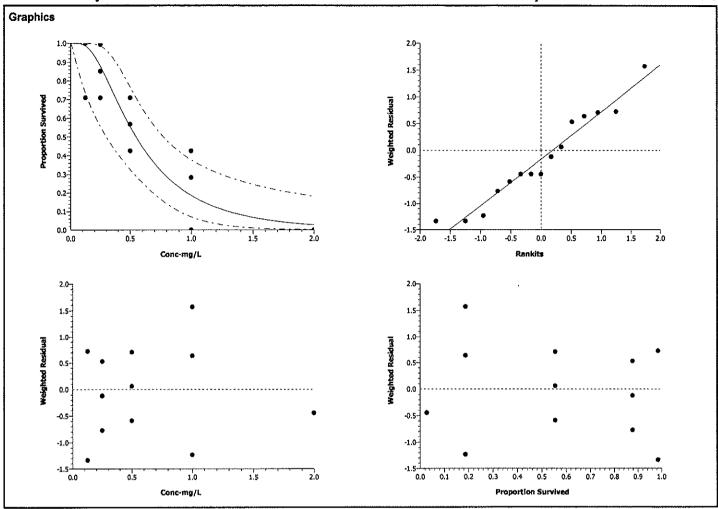
Analyst:___

Linear Regression:

Page 1 of 2

Report Date:

14 Jan-09 10:12 AM

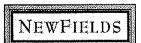

Analysis:

04-2474-4340

Reference	Toxicant 96-h A	cute Surviv	al Test							*****		NewFields
Endpoint		Ana	lysis Ty	D8	Sample L	ink	Control	Link	Date Ar	nalyzed	Version	
Proportion	Survived		ar Regre		21-3281-1	872	21-3281	1872	14 Jan-	09 10:12 AM	CETISv1	.1.2
Linear Reg	gression Options	,								•		
Model Fur	nction		Thr	eshold Option	Threshold	Thre	shold O	pt R	eweighte	ed Pooled	Groups	Het Corr
Log-Norma	al [NED=A+B*log()	X)]	Cor	ntrol Threshold	0.2	Yes		Y	es	No		No
Regressio	n Summary										<u> </u>	
iters	Log Likelihood	Mu	Sigma	a G	Chi-Sq	Crit	tical	P-Va	lue [Decision(0.05))	
36	-75.73683	1.72745	0.293	35 0.25350	10.82990	22.	36203	0.625	1 808	Non-Significan	t Heteroge	neity
Point Estir	mates	 										
% Effect	Conc-mg/L	95% LCL	95	% UCL								
10	0.230857	0.0586855	4 0.3	79844								
15	0.2724253	0.0811614	6 0.4	279859								
20	0.3107383	0.1048226	0.4	1714451								
25	0.3478742	0.1303138	0.5	5131532								
40	0.4623413	0.2229078	0.6	428301								
50	0.5486319	0.3036974	0.7	462605								
Regressio	n Parameters											
Parameter	Estimate	Std E	rror	95% LCL	95% UCL	t Sta	itistic	P-Va	lue [Decision(0.05))	
Threshold	0.2953582	0.0622	29078	0.1732683	0.4174482	4,742	2	0.000	39 8	Significant		
Slope	3.408944	0.8756	865	1.692598	5.125289	3.893	3	0.001		Significant		
Intercept	5.888776	0.2613	3715	5.376488	6.401064	22.53	30	0.000	000 8	Significant		
Residual A	Analysis											
Attribute	Method	1		Statistic	Critical	P	-Value		Decision	(0.05)		
Variances	Modifie	d Levene		3.93714	3.47805	0.	03586		Unequal '	Variances		
Distribution	n Shapiro	-Wilk W		0.9449845		0.	44918		Normal D	istribution		
Data Sumi	mary			Calcu	ılated Variate(A/B)						
Conc-mg/	Control Type	Count	Mean	Minimum	Maximum	SE	SE)	Α	В		
0	Dilution Water	3	0.80000	0.70000	1.00000	0.035	36 0.1	7321	24	30		
0.125		3	0.60000	0.50000	0.80000	0.035	36 0.1	7321	18	30		
0.25		3	0.60000	0.50000	0.70000	0.020	41 0.1	0000	18	30		
0.5		3	0.40000	0.30000	0.50000	0.020	41 0.1	0000	12	30		
1		3	0.16667	0.00000	0.30000	0.031	18 0.1	5275	5	30		
2		3	0.00000	0.00000	0.00000	0.000		0000	0	30		
					w							·····

Analyst:____

CETIS Analysis Detail


NEWFIELDS

REFERENCE TOXICANT TEST WATER QUALITY DATASHEET

CLIENT	PROJECT	SPECIES		NEWFIELDS LABORATORY	PROTOCOL	COL
City of Newport Beach	Marina Park	Ampelisca abdida	ta	Port Gamble Bath 7		USEPAUSCOE 1991
NEWFIELDS JOB NUMBER	PROJECT MANAGER	QUANTITY OF STOCK TARGET: 0.3 mL	QUANTITY OF DILUENT: 1500mL	: 1500mL INIT C	7	
1105-005-860	B. Gardiner	ACTUAL: 0.2997 M.C	ACTUAL: 1500.0mL		DATE PREP 12/23/08	08
TESTID	LOT#:		TIME TES	TEST END DATE	TIME	
POS0419.36	06510 TC	23Dec08	006)	27Dec08	-	200

WATER QUALITY DATA

DILTIN.WAT.BATCH	_	#	TEMP REC#	#		REFER	ENCE	REFERENCE TOX. MATERIAL	TERIAL	<u> </u>	REFE	RENCE	REFERENCE TOXXICANT		LOT NO.		96-H LC ₅₀	LCso	
FSW121808.01			0			8	dmiur	cadmium chloride	ide			cadmium	ium						<u> </u>
SHOUTHUM TEST CONDITIONS	CARDIT	ONG			8	DO (mg/L)	TEMP(C)	(c)aı	SAL (ppt)	(bad)	þ	Hd	TECHNICIAN		AMMONIA		SULF	SULFIDES	
		2			ΛI	> 50	1-3402		1+0282	-	80.4	8.0±0.5							
	CONCEN	CONCENTRATION				D.O.	및	TEMP.	SALINITY	VIII.	ā.	Нд		۲	AMMONIA		SULFIDES		
CLIENT/ NEWFIELDS ID	value	units	ΒΆΥ	REP	meter	mg/L	meter	ပ္	meter	ppt	meter	unit	W Q ТЕСН	METER	mg/L	Tech	meter mg/L		Tech
Dof Toy codminm	c	l) Da	0	Stock	6	02	16	161	36	38	3 1	7.7	da						
Net. FOXCadilliuli	>	III.g/L	4		3	4.0	3	19.2	3	29	3	7.7	7				••••		
Dof Toy codmium	0.425	1/200	0	Stock	6	7.1	0	16.5	a	188	6	7.7	80						
Nei. I OXCadilliulli	U. 123 TIIG/L	IIIg/L	4		3	4.0	3	19.3	3	29	3	4.4	4						
Pof Toy codminm	0.05	1/544	0	Stock	3	7.1	6	19.4	3 6	138	6	7.7	dđ						
Net. 1 OXCadillidii	0.23	11g/L	4	-	2	6.6	3	19,2	3 6	99	3	7.9	2				**********		
 	0.5	1/000	0	Stock	3	1.2	3	19,4	3	38	3	7.7	DB						
1761. 1 OACOMMINIST	?	11.g/ L	4		3	4.9	3	14.2	3	21	3	7.9	R				*********		
Dof Toy ordminm		1/500	0	Stock	6	2.0	3	19.4	3 6	38	3	1.7	Ы				*********		
Net. 1 OXCadillidii	-	11.g/L	4		3	6.5	3	14,2	3	24	3	4.9	7				********		
Ref Tox -cadminm	٠	. //w	0	Stock	3	7.0	6	19.4	3	38	3	2.2	da						
ואפו. ו סא: -סממוווימווו	4	J	4	¥2	Ţ						+		7	-,,,			•••••		

REFE_ENCE TOXICANT TEST SUR VAL DATASHEET

CLIENT PROJECT NEWFIELDS JOB # PROJECT MANAGER NEWFIELDS LABORATORY PROTOCOL
City of Newport Beach Marina Park 1105-005-860 B. Gardiner Port Gamble Bath 7 USEPR/USCOE 1991

					SUR	VIVAL	. & BE	HAVI	OR D	ATA					1	
OBSERVA	TION KEY				DATE	DAY 1		DATE	DAY 2		DATE	DAY 3		DATE	DAY 4	
LOE= loss of e Q = quiescent			TIAL #	OF		2/24			2/25		12	24			107	
DC = discolora NB = no body F= Floating on		OR	GANIS	MS	TECHNIC	IAN —	***************************************	TECHNIC	IAN T	************	technici γ√	an I	>	TECHNIC	IAN TO	************
CLIENT/ NEWFIELDS	CONC	•	REP	INITIAL					·						\	
	value	units	1	NUMBER	#ALIVE		ÒBS		#DEAD	OBS	#ALIVE	#DEAD	OBS LFOS		#DEAD	OBS
Ref.Tox	Λ,	ng/L	2		10	Ø	SF05		Ø	1 F05		ľ	·	7	ے	2 Fes
cadmium	0 10	11g / 15	3		10	Ø	1 ros	9	(2Fos	9	D	2 Fos	7	2	1 Fos
			ļ		10	g	2 ros	10	1	4 Fos	10	0	2F05	10	⊅	7
Ref.Tox	Ref.Tox cadmium 0.125 mg/I		1		9	9	INB		2	aros.	يا		INB	<u>5</u>	(2 F 05
cadmium			2		8	2	ZFOS	8	Ø	2505	6	Z	1 Fos	5	(27-05
			3		9	1	1 Fos	9	Ø	N	ি	1	2	8	Ø	W)
Ref.Tox			1			Ç-	5FOS	6	4	2 F05	5	1	Ŋ	5	Ø	1 Fos
cadmium	0.25 m	ng/L	2		9	1	4FOS	3	Ø	Ν	7)	1505 1NB	6	[2 Fos
			3		10	Ø	4ras	9	1	2FOS	ક	l	N	7	(1 Fos
Ref.Tox			1		9		SFUS	8	(2-Fos	6	2	2505	5	1	1F0S
cadmium	0.5 m	ng/L	2		10	Ø	4505	ъ	Ч	3 FUS	6	Ø	1 FBS	4	2	1505
			3		10	Ø	3 Fos	7	3	3 F0S	5	2	d FOS	3	2	N
	* "		1		10	go.	5601	9	1	1 FOS	(q	2	12 J	D.	4	ΙFOS
Ref.Tox	1 n	ng/L	2		9	ø	SFOS,	3 9	J	4 F05	7	2	1505	3	Ч	N
			3		8	l	(Fox	115 &	Ø	I FOS	4	4	a foS	Ø	H	2 F05
			1		10	ø	4705	5	5	4 F85	Ø	6	NA	_		,
Ref.Tox	2 n	ng/L	2		10	Ø	5F0S	6	ч	5 FOS	Ø	6				
Cadillain			3		10	Ç	4 Fos		Ч	5 FoS	Ø	<u>د</u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			_

ORGANISM RECEIPT LOG

Date:		Time:			NewFields B	atch No.
12/17/08		1600			JB 8	2980
Organism:			Source:		<u></u>	
Ampelisca Address!	abdita		1	ohn	Brezina	
Address:					Invoid	e Attached
On F	File				Yes	No
Phone:	1		Contact:	***************************************		
On F	ile		1	dhn	Brezina	
No. Ordered:		No. Received:			Source Batc	ո ։
-						•
Condition of Organ	nisms:	<u> </u>		_	ze or Age:	
Good			A.	eult		
Shipper:			B of L (Tr	acking	g No.)	
Shipper: Fed I					6888	8989
Condition of Conta	ainer:		Received			
Good				CR	•	
Confirmation of ID	of Organism:	Yes No			Technician (I	nitials):
Notes:						
pH (Units)	Temp. (°C)		O. g/L)	5	ductivity or Salinity lude Units)	Technician (Initials)
7,2	9.90	39.	8	•	31	CR
Notes:						

CLIENT NEWFIELDS JOB NUMBER City of Newport Beach 1105-005-860 PROJECT MANAGER PROJECT Marina Park B. Gardiner NEWFIELDS LABORATORY DILUTION WATER BATCH SPECIES Neanthes arenaceodentata Port Gamble WATER QUALITY DATA TEST START DATE FSW121808.01 Port Gamble START TIME TEST START DATE 1600 19Dec08 PROTOCOL **END TIME** USEPA/USCOE 1991 TEST END DATE 29Dec08

Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	Control /	CLENI/NEWHELDS ID		TEST CONDITIONS	
10 5	10 4	10 3	10 2	10 1	9	တ ယ	7 2	<u>ა</u>	ტ 1	4	ယ ယ	1)	_	0 5	0	ο	0 2	0	DAY REP			
				- 1	س	[V]	3	\sim	w	w	(V)	02	رر	ن ا				w	meter			
8.9	6.9	6.7	6.9	8.9	6.8	ه. لل	6.6	6:10	6.9	6.9	6.9	1.4	رم،	7.1	7.1	7.0	7,1	7.0	1	D.O.	D.O. (ma/L) > 4.6	
6				2	M	C	W	W	S	S	w	w	2					W	meter			
18.6	18.6	18.5	18.5	18.5	18.9	0.81	-	19.5	19.5	19.4	19.4	19.6	19.3	19.1	19.1	1.5)	19.1	19.1		HEMP	TEMP (°C) 20 ± 1	WATER GOALL CATA
				2	3	Ŋ	W	W	V	S	W	W	√,	6				w	meter			
33	2 3	33	32	34	33	32	32	h	28	32	32	31	3/	3/	3/	3/	3/	78	ppt	SALINITY	SALINITY (ppt)	
<₹				V	w	W	w		W	w	W	w	٠, .	_				W	meter			
8.2	8.2	8.2	8,2	8.1	0,8	8.2	たた	80	8,2	8,0	4.9	8	7.9	8.1	8,0	7.9	8./	8, 1		모	pH (pH units) 7.8 ± 0.5	
~				4	A	7	mer	2008	8	26	NWIS	MMR	HZ					tating +		TECH.		
				12/29	12/28	12/27	12/26	(2/25	12/21	12-23	12/22	1-61-61	12/20	•				(2/17)		Date	ļ	

NEWFIELDS JOB NUMBER CLIENT City of Newport Beach 1105-005-860 PROJECT MANAGER PROJECT Marina Park B. Gardiner NEWFIELDS LABORATORYDILUTION WATER BATCH
Port Gamble FSW121808.01 SPECIES Neanthes arenaceodentata TEST START DATE Port Gamble START TIME TEST START DATE 19Dec08 USEPA/USCOE 1991 END TIME PROTOCOL 29Dec08

LA-3 Reference /		LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	LA-3 Reference /	CLIENI/NEWFIELDS ID		TEST CONDITIONS	
10		6	10	10	9	00	7	o	(J)	4	ω	N		0	0	0	0	0	2			
6	4	ω	2	\frac{1}{\frac{1}{2}}	4	ω	S	<u> </u>	ζή ,	4	ω	N et		2	4	ω	2	<u></u>	- ₹ -	5		
				"	Ü	N	0%	W	W	3	W	o,	N	<u> </u>				3	meter		Ö	
6.9	6.8	6.4	6.8	6.8	9. <i>0</i>	7.3	6.3	6.6	6.8	6.8	ر د د	5	60	7.0	7.1	7.(7.0	7.1	mg/L	D.O.	D.O. (ma/L) > 4.6	
1	-			ω	W	и	B	W	W	ω	W	w	W,					Z	meter			
18.5	18.5	18.6	18.5	5.31	18.9	18.0	19.4	19.5	19.2	19.4	19.5	(9.5	19.4	19.6	19,0	19.1	19,2	19.0		TEMP	TEMP (°C) 20 ± 1	WATER QUALITY DATA
$ \overline{} $	-	-		2	W	W	W	W	W	W	W	v	W	4				\sim	meter		S	Ę
134	35	22	33	33	33	33	33	<u>(v)</u>	33	93	3 4	ಬ	31	3/	~~	2/	3/	18	ppt	SALINITY	SALINITY (ppt)	DATA
			_	W	W	W	CN	_	W	W	(V	W	V	4				W	mete			
8.1	5.4	8.	8,0	8.0	6.0	8.2	7.8	8.0	2.8	8,1	₩	\$ \$	ò ò	8./	9.2	8./	8,2	8.2		рH	pH (pH units) 7.8 ± 0.5	
M .				7	73	Z	mar	8056	1	93	MMR	MMB	HB	4				4		ECH.		
5				12/29)2/28	12/21	12/26	12/25	12/21	14/23	19676	100	12/20	<				12/19		Date	1	

NEWFIELDS JOB NUMBER CLIENT City of Newport Beach 1105-005-860 PROJECT MANAGER PROJECT Marina Park B. Gardiner NEWFIELDS LABORATORY DILUTION WATER BATCH SPECIES Neanthes arenaceodentata Port Gamble WATER QUALITY DATA TEST START DATE FSW121808.01 Port Gamble START TIME TEST START DATE 19Dec08 USEPA/USCOE 1991
TEST END DATE END TIME PROTOCOL 29Dec08

7	V	7.1	<	33	7	18.7	E	6.6	X	თ	0	Comp C-U /
		8.1		33		186		le.4		4	10	Comp C-U /
		1.8		33		18.5		6.8		ယ	10	Comp C-U /
	-	8./		33		18.5	-	<i>é</i> .7.		2	7	Comp C-U /
12/29	2	8.1	W	33	W	185	B	67	S	>	10	Comp C-U /
12/28	K	4.9	ω	32	Ŋ	8.81	3	6.6	Ŋ	4	9	Comp C-U /
12/27	コ	8.2	W	33	ß	18.3	S	ナナ	W	ω	∞	Comp C-U /
12/26	John	8.4	S	32	S	19.1	W	6.4	S	2	7	Comp C-U /
12/25	8003	<u>.</u> .	W	<u>~</u>	M	19.3	W	6.6	W		တ	Comp C-U /
12/24	~	8,2	W	32	~	19.5	V	6.8	~	თ	Ch	Comp C-U /
12/23	5P	8.0	W	32	\sim	19.4	W	6.7	W	4	4	Comp C-U /
(26)2	MMB	8. (N	48	W	(ବ. ଟ	W	6.6	w	ယ	ယ	Comp C-U /
(4)	SWW	ب 8.	w	8	W	19.4	4	6.7	W	N	N	Comp C-U /
12/20	BH	1.3	w	3	W	19.4	8	7.0	W			Comp C-U /
*	V	8.1		3/	Ó	19.0	U	7.0	(Jo	5	0	Comp C-U /
		8,1		3/		19.2		7.2		4	0	Comp C-U /
		8.1		12		1.7.1		7.0		ယ	0	Comp C-U /
•		8.1		70		19.2		7.2	_	Ν.	0	Comp C-U /
12/19	L	8.1	N	72	~	19.1	W	1.7	w		0	Comp C-U /
		unit	meter	ppt	meter		meter	mg/L	meter	R P	DAY	CLIENT/NEWFIELDS ID
Date	TECH.	7.8±0.5 pH		30 ± 2		20 ± 1		> 4.6 D.O.				
		+ (pH units)	<u> </u>	SALINITY (ppt)	SA	TEMP (°C)		.O. (ma/L)				TEST CONDITIONS

CLIENT

10 DAY SOLID PHASE TEST DATA

NEWFIELDS JOB NUMBER City of Newport Beach 1105-005-860 PROJECT MANAGER PROJECT Marina Park B. Gardiner NEWFIELDS LABORATORYDILUTION WATER BATCH SPECIES Neanthes arenaceodentata Port Gambie TEST START DATE FSW121808.01 Port Gamble START TIME TEST START DATE 19Dec08 END TIME USEPA/USCOE 1991 TEST END DATE PROTOCOL 29Dec08

Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /	Comp C-L /			TEST CONDITIONS							
10	6	10	6	10	9	∞	7	တ	O1	4	ယ	N		0	0	0	0	0	DAT			
5	4	3	2	۲.	.4	ω C L L	2		Ω	4.	ω	2		5	4	ω	2	<u> </u>	T)	;		
L				3	3	3	W	(\sqrt	W	M	W	07	W	lacksquare				Ñ	meter		۵	
6.9	6.8	6.8	6.6	4.9	6.8	P. F	6.3	6.8	6.8	5.7	6.7	6.8	7.	7.0	7,0	7.7	6.9	0,4	mg/L	D.O.	D.O. (ma/L) > 4.6	
4				W	W	W	W	$\langle v \rangle$	W	ورز	W	w	W	\bigvee			_	W	meter			
18.6	18.5	18.6	18.5	18.6	18.9	18.0	1.01	19.5	19.5	17,2	19.6	5.67	19.4	19.2	19.1	19.0	19.1	18.8		TEMP	TEMP (°C) 20 ± 1	WATER QUALITY DATA
<				W	U)	$\mathcal{O}_{\mathcal{O}}$	S	W.	W	S	W	W	\sim	W	S			W	meter		S	LIT
33	33	34	33	33	35	34	34	3	32	32	32	31	3	3/	1/2	1/2	31	31		SALINITY	SALINITY (ppt)	DATA
5			_	W	W	W	W		W	w	W	W	W					W	meter		_	
8.2	8./	8.1	8.2	8.1	8.0	8.7	4.8	7.8	8,2	8./	9	P. [0.00	8.1	8.1	8./	8.1	8:/	r unit	pН	pH (pH units) 7.8 ± 0.5	
6				(T	ユ	MAR	BWG	7	24	MMB	MIM AS	BH	V				+		TECH.		
F				12/29	12/28	12/21	12/20	12/25	12/24	12-23	(2/3)	12(d)	12/20	8			,	12/19		Date		

Page	of
i ago	O1

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
Newport/Marina Park	Neamhes		
1 1			
PRETEST / I	NITIAL/FINAL/OTHE	R (circle one) DAY of T	TEST:
Ó	VERLYING (OV) PORI	EWATER (PW) (circle one)
			,

Calibration Sta	ndards Temperature	Sample temperature should be
Date:	Temperature:	within ±1°C of standards
12/19/08	19.0	temperature at time and date of
		analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sulf. mg/L
Control LA-3 Ref Comp.C-U Comp.C-L	Surr	12/19/08 CR	<0.5 <0.5 <0.5 <0.5	120	12/19/08 CR	N			
LA-3Ref			<0.S						
Comp. C-U			40.5						
CompC-L	V	\bigvee	40.5		V	V			

Page	of

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
Newport/Marina Park	Nearlies		
PRETEST /	NITIAL / FINAL / OTHE	R (circle one) DAY of T	ГЕST:

OVERLYING (OV) / POREWATER (PW) (circle one)

Calibration Stan	dards Temperature	Sample temperature should be
Date:	Temperature:	within ±1°C of standards
12/19/08	19.0	temperature at time and date of
		analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sulf. mg/L
Control	Sur.	12/19/08 CR	40.5	19	12/19/08 CR	N			
LH-3 Ref CompC-U Comp.C-L			1.18			4			
CompC-U			4.82						
COMP.C-L		V	<0.5		V	V			

Page	of
_	manufacture description

Client/Project:	Organism:	NewFields	Test ID:	Test Duration (days)			
Newport/Marina	Park Nearthes						
PRETE	ST / INITIAL / FINAL OVERLYING (OV	./OTHER (circle one /)/POREWATER (P	e) DAY o PW) (circle o	of TEST:			
Cal	ibration Standards Te	Sample	e temperature should be				
Date	•	Temperature:	within	within ±1°C of standards			
12/29/08		20.0	temperature at ti				

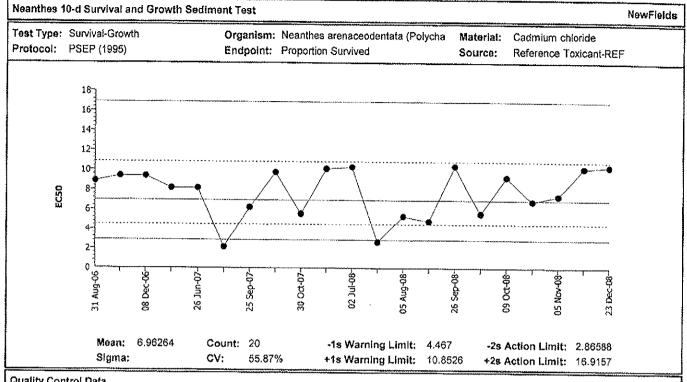
analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sulf. mg/L
Control	Surr	12/29/08CR	<0.5	20.0	12/29/08CR	N			0.014
LA-3Ret			<0.5		'1				0.003
Comp C-L			40.5						0,005
LA-3Ref CompC-L CompC-U	•	V	<0.5 <0.5 <0.5		\bigvee				0,000
			-						
					· · · · · · · · · · · · · · · · · · ·				
				<u> </u>					
-									

Page	of

Client/Project:	Organism:	NewFields '	Test ID:	Test Duration (days):				
Neuport/Marina ?	ark Nearthos							
, 1	7 / INITIAL / FINAL) (OVERLYING (OV) /							
Calib	oration Standards Temp	oerature	Sample t	emperature should be				
Date:	Date: Temperature: within ±1°C of standards							
12/29/08	Z	20	temperat	ure at time and date of				
			analysis.					

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sulf. mg/L
Control	Surv.	12/29/08 CR	<0.5	20	12/29/08 CR	N	7.8	32	
LA-3 Ref			40.5				8,0	3 3	
CompC-L			<0.5				7.9	34	
Comp C-U	\rightarrow		<0.5		V	V	8.0	33	
			\						
							1		



Comp C-L /	Comp C-U /	LA-3 Reference /	Control /	#E = Emergence #M = Number of Mortality G = Growth (fungal, bacterial, or algal) D = No Air Flow (DO?) N = Normal	CLIENT City of Newport Beach
5 4 3 2 1	Δ 4 0 Δ -	5 4 3 2 1	5 4 3 2 1	REP	Sh like
2		ಶ	08	INITIAL # OF ORGANISMS	PRC
			Z	DATE 12 2000 TECHNICIAN TO OBSERVAS.	PROJECT Marina Park
			Z	DAY 2 DATE 2 21 08 TECHNICIAN MN/NO OBSERVNS.	
			Z Z	DAY3 DATE 12/22/08 TECHNICIAN MINUS OBSERVINS.	NEWFIELDS JOB NO. PROJECT MAN 1105-005-860 B. Gardine ENDPOINT DATA & OBSERVATIONS
			N	DAY 4 DATE / Z/23 TECHNICIAN OBSERVNS.	A & O
			7	DAY 5 DATE 2/24 TECHNICIAN OBSERVINS.	PROJECT MAN. B. Gardiner BSERVATIONS
			Z	DAY 6 7/25 12/25 DATE	
\$				DAY 7 DATE 12/26 TECHNICIAN WARP OBSERVINS.	NEWFIELDS LAB Port Gamble Bath 7
4			Z	DAY8 DATE $ 2 27$ TECHNICIAN SOBSERVAS.	
			2	DAYS DATE [2 2\$ TECHNICIAN TS OBSERVAS	XOL S 3COE 1991 ∧
			7	DAY 10 DATE 12/24 TECHNICIAN OBSERVAS.	PROTOCOL SPECIES USEPA/USCOE 1991 Neanthes arenaceodentata
ひなたかた	NWWN	, M d d d d	40 nth	NUMBER REMAINING	sodentata

Page 1 of 1

Report Date:

16 Jan-09 2:26 PM

Luant	y Conti	ol Data								
Point	Year	Month	Day	Data	Delta	Sigma	Warning	Action	Test Link	Analysis
1	2006	Aug	31	8.86577	1.90313	0.54443	T-0500 & 1-4400-1-4500-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4		16-7169-3504	00-9849-6979
2		Dec	8	9.37175	2.40911	0.66948			10-5822-0812	10-0140-9364
3			8	9.37175	2.40911	0.66948			10-5822-0812	08-7192-3895
4	2007	May	11	8.16253	1.19989	0.35822			03-7778-9913	06-1785-2165
5		Jun	26	8.16258	1.19994	0.35824				14-8493-4946
6		Jul	18	2.13748	-4.82517	-2.66071	(-)	(-)	09-5163-0637	11-9760-1230
7		Sep	25	6.20193	-0.76071	-0.26067			06-6354-6111	12-2113-4941
8		Oct	24	9.76006	2.79742	0.76095			05-9113-1606	14-0319-5260
9			30	5.55412	-1.40852	-0.50923				13-6201-5780
10	2008	Feb	17	10.12762	3.16498	0.84424				04-7495-8038
11		Jul	2	10.30107	3.33843	0.88250			07-0160-7176	03-3190-0644
12			22	2.65108	-4.31156	-2.17553	(-)	(-)	12-3989-8103	10-4556-3131
13		Aug	5	5.30308	-1.65956	-0.61344			12-5764-3928	08-5080-2403
14			29	4.77241	-2.19023	-0.85100			04-2068-8020	17-2391-7369
15		Sep	26	10.37648	3.41384	0.89893			12-2518-6391	15-3142-3234
16			30	5.55412	-1.40852	-0.50923			14-9908-4079	13~4530-5299
17		Oct	9	9.26124	2.29860	0.64275			06-2717-9387	09-3671-8537
18			23	6.83792	-0.12472	-0.04072			19-3732-1210	02-0490-6958
19		Nov	5	7.37857	0.41593	0.13072			15-0302-5653	14-4382-3985
20		Dec	15	10.20151	3.23887	0.86061			12-5691-1479	14-1608-5886
21			23	10.35175	3.38911	0.89355			17-9927-6897	13-4293-3597

Spearman-Karber:

Report Date:


Page 1 of 1

Analysis:

16 Jan-09 2:25 PM 13-4293-3597

CET	IS	Ana	lysis	Detail

Neanthes 1	0-d Surv	ival and	i Growth S	Sediment Te	st						NewField
Endpoint			An	alysis Type		Sample	Link Co	ntrol Link	Date A	\nalvzed	Version
Proportion Survived Tri			Trir	nmed Spear	man-Karber	17-9927-	6897 17			-09 2:25 PM	CETISv1.1.2
Spearman-	Karber O	ptions		7777		-		Point Estin	nates		
Threshold	Option	Lowe	r Threshol	d Trim	Mu	Sig	ma	EC50/LC50		95% LCL	95% UCL
Control Thr	shold	0.1		0.00%	1.01501	4 0.01	102043	10.35175		9.87655	10.84982
Data Sumn	nary				Calcula	ted Variate	(A/B)		*****		
Conc-µg/L	Control	Type	Count	Mean	Minimum	Maximum	SE	SD	- A	B	
0	Dilution 1	Water	3	0.90000	0.80000	1.00000	0.02041	0.10000	27	30	
1.875			3	1.00000	1.00000	1.00000	0.00000	0.00000	30	30	
3.75			3	0.93333	0.80000	1.00000	0.02357	0.11547	28	30	
7.5			3	0.93333	0.80000	1.00000	0.02357	0.11547	28	30	
15			3	0.00000	0.00000	0.00000	0.00000	0.00000	0	30	
30			3	0.00000	0.00000	0.00000	00000	0.00000	۸	20	

CETIS Analysis Detail

Comparisons: Report Date: Page 1 of 1 16 Jan-09 2:25 PM

Analysis:

02-9671-6281

Neanthee 10.	d Survival and	I Groudh S	adlmost To			···	·····		Analysis:			02-9671-628
	G OUI VIVAI AITC	·	····	» (NewFields
Endpoint Proportion Su	ninad	~~~~	lysis Type parison		Sample L		ontrol	~~~~~	Date Analyzed		Version	
T Topolition Gu	IVIVEO	CON	ipanson		17-9927-6	3897 1	7-9927	-6897	16 Jan-09 2:25	PM	CETISy1	1.1.2
Method		Alt		Transform	Zeta	NOEL	L	OEL	Toxic Units	ChV		PMSD
Dunnett's Mul	tiple Compariso	n C>	T Angu	ar (Corrected))	7.5	15	5	13.3333	10,6	066	24.60%
Group Comp	arisons	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
Control	vs Conc-µ	g/L	Statistic	Critical	P-Value	MS	D		Decision(0.05)			
Dilution Water	1.875		-1.3084	2.41651	0.9778		8802		Non-Significant E	ffect		
	3.75		-0.4558	2.41651	0.8795	0,2	8802		Non-Significant E			
	7.5		-0.4558	2.41651	0.8795	0,2	8802		Non-Significant E			
ANOVA Table			· · · · · · · · · · · · · · · · · · ·			/::					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Source	Sum of	Squares	Mean Squ	are DF	F Statist	ic P-V	/alue		Decision(0.05)			
Between	0.0381		0.0127189		0,60		3466		Non-Significant E	ffect		
Error	0.1704	716	0.021309	8						,		
Total	0.20862	2817	0.0340278	11								
ANOVA Assu	mptions			***************************************						······································		
Attribute	Test			Statistic	Critical	P-V	alue		Decision(0.01)			
Variances	Modifie	d Levene		1.99523	7.59099	· · · · · · · · · · · · · · · · · · ·	9336		Equal Variances	······································		
Distribution	Shapiro	-Wilk W	· · · · · · · · · · · · · · · · · · ·	0.86246			5249	~~~	Normal Distribution	on.		
Data Summar	v			Origi	nal Data			+			Duta	***************************************
Conc-µg/L	Control Type	Count	Mean	Minimum	Maximum	SD	***************************************	Mean	*******	formed		00
0	Dilution Water		0.90000	0.80000	1.00000	0.1000		1.2560	Minimum 07 1.10715		ximum	SD 0.46050
1.875		3	1.00000	1.00000	1.00000	0.0000		1.4120			1202 1202	0.15256 0.00029
3.75		3	0.93333	0.80000	1.00000	0.1154		1.310			1202	0.00029
7.5		3	0.93333	0.80000	1.00000	0.1154		1.3103			1202	0.17602
Data Detall												0.77002
Conc-µg/L	Control Type	Rep 1	Rep 2	Dan 2	Dan 4 F	1 P						_
0	Dilution Water		1.00000	Rep 3 0.90000	Rep 4 F	Rep 5	Rep	0	Rep 7 Rep	8	Rep 9	Rep 10
1.875		1.00000	1.00000	1.00000								
3.75		1.00000	1.00000	0.80000								
7.5		0.80000	1.00000	1.00000								
Graphics				<u></u>		***************************************	-		***************************************			
1.0 ₇						0.20						
0.9	<u>l</u>	•	Ī	ļ		0.20	1					
1						0.15				/	/ •	
2 0.7-1 11 0.7-1				_		0.10	H		•	• •	•	
8 7			******	Reject Null		0.0s	3					
Proportion Survived 0.2						Centered Corr. Angle 800 080					· · · · · · · · · · · ·	
2 0.5-]						-0.05						
V. 1							1					
0.3-1						-0.10	1	/				
0.2-						-0.15	- Frank		•			
0.1-						·0.20	1 /	•				
0.0 1	0	1.875	3.75	7.5		-Ó.25	<u> </u>	-		·		
	·	Conc-µg/i		7.3		•	2.0 -1.	.5 -1.0	0 -0.5 0,6 0. Rankits	\$ 1.0	1.5	2,0
			-						rankits			

Page 1 of 1

CETIS Data Worksheet

Report Date: Link:

16 Jan-09 2:25 PM 17-9927-6897

Neanthes 10-d Survival and Growth Sediment Test

NewFields

Start Da	to: 23 Do	4 00 01 00 DM	Cupation	<u> </u>
i otart Da	(8: Z3 De	c-08 01:00 PM	Species:	- N

23 Dec-08 01:00 PM

Species: Neanthes arenaceodentata

Sample Code:

284325800

Ending Date: 27 Dec-08 12:30 PM Protocol: PSEP (1995) Sample Date: 23 Dec-08

Sample Source: Reference Toxicant

imple Date					~	đmium chloride			Station: P080418.38	i e
Conc-µg/L	Code	Rep	Pos	# Exposed	# Survived	Total Weight-mg	Tare Weight-mg	Pan Count	Mean Length-mm	Notes
0	D	1	14	10	8		0			
0	D	2	5	10	10		0			
0	D	3	в	10	9	***************************************	0			
1.875		1	13	10	10		0	, -, -, -, -, -, -, -, -, -, -, -, -, -,		<u> </u>
1,875		2	10	10	10		0			
1.875		3	11	10	10		0			
3.75		1	3	10	10	A Property of the second	0			
3.75		2	9	10	10		0			
3.75		3	2	10	8	A ***	0			
7.5		1	17	10	8	***************************************	0			[
7.5		2	7	10	10	*******************************	0			
7.5		3	18	10	10		0	 -		
15		1	15	10	0		0			
15	***************************************	2	18	10	0		0			
15		3	4	10	0		0			
30		1	8	10	0	, v A* \ 1	0			
30		2	12	10	0		0			1
30		3	1	10	0		0			

96-HOUR REFERENCE TOXICANT TEST WATER QUALITY DATASHEET

CLIENT	PROJECT	SPECIES	NEWFIELDS LABORATORY	KORATORY	PROTOCOL
SAIC	Duwamish river	Neanthes arenaceodentata	Port	Port Gamble Bath 6	PSEP 1995
NEWFIELDS JOB NUMBER	PROJECT MANAGER	QUANTITY OF STOCK : 4.5 mL	QUANTITY OF DALUENT: 1508mL	LUENT: 1500mL	INIT CR
0	Tracy Schuh	ACTUAL: 4 SOML	ACTUAL: S	ACTUAL: 500 9 m	DATE PREP 12/23/02
TestID			TIME T		TIME
POBO418.38 065	06510TC	23Dec08	008/	27Dec08	80

بے
\in
å
>
Ξ
₹
ថ
ĸ
1
≶

DILTIN.WAT.BATCH	TEM	TEMP REC#				REFE	REFERENCE TOX. MATERIAL	ئے			REFERENCE TOXICANT	XICANT
٥						S	cadmium chloride				cadmium	The state of the s
4550	TEST CONDITIONS				DO (mg/L)		TEMP(C)		SAL (ppo		Ä	
					> 6.0		20±1		28±1		8.00 ± 1	C IECHINGIAN
CLIENTI NEWFIELDS (D	CONCENTRATION	ρΑΥ	989		D.O.		темР.		SALINITY		Hd	300± 022
	value units			meter	mg/L	il dets:	ပ္	E for	ppt	molar	unit	MG FCH
		0	Stock	8	6.3	8	19.4	0	28	9	7.7	SE
		-	Rep 1	~	6.4	٦	9%	\sim	82	W	7.8	4
Ref. Toxcadmium	0 mg/L	2	Rep 2	3	6.8	W	19.1	M	28	W	7.5	K
		က	Rep 3	b	p: 7	3	0.61	3	28	10	ナナ	MAN
		4	Rep 1	3	6.3	3	14.1	8).	2008	8)	D ⊗	\$2 ,
		0	Stock	6	7.1	6	19.4	6	38	3	7.7	22
		-	Rep 1	W	2.9	~	4.61	3	82	W	7.5	7
Ref. Toxcadmium	1.875 mg/L	2	Rep 2	3	6.5	3	19.5	3	28	8	2.6	p
		3	Rep 3	3	6.3	23	9.0	3	38	60	ナナ	MAR
		4	Rep 1	2)	6.2	3	14,1	3	3,8	M	8.3	Þ
	,	0	Stock	6	1,7	3	19.3	6	38	9	7.7	R
		-	Rep 1	w	<i>5.9</i>	\sim	(9.7	\sim	82	\sim	5.F	2
Ref.Toxcadmium	3.75 mg/L	2	Rep 2	20	4.3	n	19.5	\sim	28	3	J. C	Ħ
		က	Rep 3	4	0.0	ιψ	(9,3	\mathcal{N}	2.g	3	<i>た</i> 'た	mel
		4	Rep 1	M	6.3	Μ)	0, 2	M	28	W	2.8	H

CLENT	PROJECT	SPECIES	NEWFIELDS LABORATORY	ABORATORY	PROTOCOL
SAIC	Duwamish river	Neanthes arenaceodentata	Po	Port Gamble Bath 6	PSEP 1995
NEWFIELDS JOB NUMBER	PROJECT MANAGER	QUANTITY OF STOCK: 4.5 mL	QUANTITY OF	QUANTITY OF DILUENT: 1500mL	INT
٥	Tracy Schuth	ACTUAL:	ACTUAL:		DATE PREP
Test ID	LO1#;	TEST START DATE:	TIME	TEST END DATE	TIME
		23Dec08		27Dec08	

						WA	TER (WATER QUALITY DATA					
DILTIN.WAT.BATCH		TEMP REC#	REC#				REFE	REFERENCE TOX. MATERIAL				REFERENCE TOXICANT	XICANT
0								cadmium chloride				cadmium	
TEST.	TEST COMPTIONS	ORC				DO (mgt.)		TEMP(C)		Sal. (ppr)		The state of	
		2				09.5		20+1		28±1		8.00 ± 1	TECHNICAN
			0	Stock	W	7.0	8	19.5	3	28	ω	7.7	RA
		II	τ	Rep 1	W	le. 4	3	t.61	3		2	7.9	8
Ref.Toxcadmium	7.5	mg/L	2	Rep 2	3	7.1	60	19.4	6	28	W	4.6	5
	***************************************		3	Rep 3	2	8.9	(1)	19.3	W	28	3	7.7	mer
			4	Rep 1	6	0.9	M	18.8	3	28	m	8.2	H
		LJ	0	Stock	6	7.3	8	19.4	W	38	8	7.7	41
		1	-	Rep 1	N	4.9	3	. 4.61	ω	82	M	7.5	8
Ref.Toxcadmium	ξ τ	J√gm J	2	Rep 2	₩	6.9	33	4.4	ч	3-8	2	+:+	H
	***	ļ	ب	Rep 3	3	5.7	3	19.3	3	28	9	2,5	pohil
			4	Rep 1	A A	1							1
		l	0	Stock	6	7.1	3	19.4	3	38	8	7.7	2/2
				Rep 1	M	6.6	Λ.	t.81	\sim	28	\sim	2.5	4
Ref.Toxcadmium	8	mg/L	7	Rep 2	. بى	6.9	3	19.5	W	ગ્રજ	W	ナナ	Ħ
	*	<u></u>	3	Rep 3	支								77
	_	L	1					The state of the s			-		ì

4 Rep 1

96-HOUR REFERENCE TOXICANT . EST OBSERVATION DATASHEET

			SPECIES		
			Neanthe	s arenaceodenta	ıta
CLIENT	PROJECT	NEWFIELDS JOB#	PROJECT MANAGER	NEWFIELDS LAB	PROTOCOL
SAIC	Duwamish river	1 '	Tracy Schuh	Port Gamble Bath 6	PSEP 1995

			1	ouwanii s		VAL 8	BEH	AVIO	<u> </u>	TA	~~~~		Gampte	22311 17		1995
#S= Number on the Su	rfaca					DAY 1			DAY:2			DAY 3		10.500	DAY.4	
#M≃ Number of Mortail L∞Anoxic Surface					DATE	a constitution (Section)	- bet register y	DATE	-C. 100 100 100 1	1,38,933,2633,3	DATE	2090000		DATE		
F≖Fungal Patches D≃No Air Flow (DO?) U∞Excess food			AL # (12	124		[2	425	<u></u>	12/	26		l	2/2	7
N=Normal B=No Burrows			 -		TECHNIC	IAN	***********	TECHNICI	AN		TECHNIC	IAN	************	TECHNIC	IAN	***********
					تم	<i></i>			75		M	PP			-15	
CLIENT/ NEWFIELDS ID	ÇÖN	ic.	REP	INITIAL					3		<u> </u>	· · ·				
	velue	មក1ែ៖		NUMBER	#ALIVE	#DEAD	QB\$	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	овѕ
- 0 4			1		(0	e	И	10	ø	Ν	10	Ø	Ν	8	Ø	2NB
Ref.Tox cadmium	0	mg/L	2		10	v		10	Ø	Ν	10	Ø	N	10	Ø	N
			3		16	q	¥	10	Ø	N	11)	W	Ν	9	Ø	INB
			1		10	Ø	N	10	Ø	λ	10	8	N	íO	Ø	N
Ref.Tox cadmium	1.875	mg/L	2		0	ø	(۱۷	Ø	Ν	10	D	Ν	ю	Ø	ุ้งไ
			3		10	Ø	V	10	Ø	N	10	Đ	N	10	Ø	N
			1		10	0	N	(0)	ŷ	Ν	1,0	R	Ν	10	Þ	در
Ref.Tox.~ cadmium	3.75	mg/L	2		10	Ø		Įυ	Ø	Ŋ	10	سهر	Ν	10	Ø	N
			3		10	Ø	V	ĮΟ	Ø	Ν	ιD	0	Ν	8	Ø	243
			1		go	Ø	Н	10	Ø	Ŋ	10	8	N	8	1	INB
Ref.Tox cadmium	7.5	mg/L	2		10	Ø]	10	ð	Ŋ	10	Ŋ	N	(ව	Ø	N
			3		10	Ø	V	γÙ	Ø	N	10	Ø	N	10	ð	N
		***************************************	1		10	Ø	Q	10	Ø	Q	090	10	N			. 2
Ref.Tox cadmium	15	mg/L	2		lc	Ø	1	10	Ø	Q	800	210	Ν			
			3		IC	Ø	4	ΙŪ	Ø	Q	6 0 10	10	N			>
			1		(0	7	Q	ø	10	NA.						
Ref.Tox cadmium	30	mg/L	2		(C	Ø		Ø	טו	{		\times				
			3		10	Ø	$\sqrt{}$	Ø	(0)	\bigvee		······································				<u> </u>

Incorrect andy MFP 12/26/08

ORGANISM RECEIPT LOG

Date:		Time:			NewFields E	Batch No.
12/16/08	}	1430			DROG	540
Organism:	•	<u> </u>	Source:			
Neanthe	Δ		Dan	Re	ish	
Address:					Invoi	ce Attached
On F	i'le				Yes	No
Phone:			Contact:			
on F	ile		00	F	le	
No. Ordered:		No. Received:	·	*******	Source Batc	
					Cult	vie
Condition of Organ	nisms:		Approxim	nate Si	ze or Age:	
Good			3 - 5	5 M	n	
Shipper:			B of L (Tr			
FEDEX			8683	7 (1360 01	540
Condition of Conta	iner:		Received MM	•		
Confirmation of ID	of Organism:	,	`		Technician (Initials):
		Yes (No)		MMB	
Notes:						
pH (Units)	Temp. (°C)	D. (mg		5	fuctivity or Salinity ude Units)	Technician (Initials)
7,3	14.4	6.	9	3	35 ppt	MMB
Notes:					· · · · · · · · · · · · · · · · · · ·	,
				·	<u>, , , , , , , , , , , , , , , , , , , </u>	

Appendix D Water-Column Toxicity Tests Data Sheets and Supporting Information

96 HOUR SUSPENDED PARTICULATE PHASE TEST

WATER QUALITY DATASHEET

			ر م		2		7.1		ω	4	0%	Site Water /
		7	36		19.3	-	7.8		2	•		
と	1/11 0	3 7.8	2000		9.3	V)	7.9	W	_			
GR.	1/10 C	17.6		ļ	19.3	ح	14.10	_	ω	ယ	0 %	Site Water / .
7	1 2 1	1 4.8	35		19.1	¢	1.1	¢	2	2	0 %	Site Water / .
MMIS		- +. x	35	<u> </u>	19.8	F	4.4	æ	->	_	0 %	Site Water / .
+	1/7/09 5	1 7.9	34	/	19.8	4	20	'n	All	0	0 %	Site Water / .
	÷	7.7	33	-	19.2	+	7.8	•	ა			
		7.7	₩ ₩		19.2		6.2		4	,		
		7.6	33		19.2		6.5		ယ	4	0 %	Control / .
		ا ا ا	33		19.3		7.8		2			
>	Vici C	W 7.4	<u> </u>	ω	19.0	(94)	7.9	W		•		
P	0 4/11	_	کن 33		18.8	c	7.1	4	ω	ယ	0 %	Control / .
至	19	0.4	ა გ		18.6	£	σt	_ عـ	2	2	0 %	Control / .
MVB	1 8 M	1 7.5	48		19.5	4	+ -	~~ ·	ᅩ	_	0 %	Control / .
f	1/7/09	1 8.0	32		19.8	4	8.4	カ	All	0	0 %	Control / .
		meter unit	ter ppt	meter	°C	meter	mg/L	meter			value units	CLICAL NEWSELDS TO
ech FEEDING	Date	рН	SALINITY		TEMP.		D.O.		REP	DAY	CONCENTRATION	O IENT) NEWERS DOID
		^{pH} 7.8±0.5	SALINITY (ppt) 31 ± 2		TEMP (C) 20 ± 2	N	DO (mg/L) > 3,7	, 0			· vs	TEST CONDITIONS
			A	DAT/	WATER QUALITY DATA	TER Q	WA:					
1700	11Jan09	USEPA/USCOE 1998 / NEWFIELDS BIO067	EPA/USCOE 1998,	USE	ath	nble Ba	Port Gamble Bath		¬	Bill Gardiner	Bill G	1105-005-860
TIME	TEST END DATE		PROTOCOL.	PROT		۲	NEWFIELDS LABORATORY	NEWFIELL		3ER	PROJECT MANAGER	NEWFIELDS JOB NUMBER
169	07Jan09	10609	FSW010609		na	beryllii	Menidia beryllina			Marina Park	Marii	City of Newport
TIME	TEST START DATE		DILUTION WATER BATCH	TUJIO				SPECIES			PROJECT	CLIENT

96 HOUR SUSPENDED PARTICULATE PHASE TEST WATER QUALITY DATASHEET

96 HOUR SUSPENDED PARTICULATE PHASE TEST WATER QUALITY DATASHEET

					WAIE	WATER QUALITY	LITUATASHEE	SHEEL						
CLIENT	PROJECT)	to	SPECIES			i	DILUTION	DILUTION WATER BATCH			TEST START DATE		TIME
Cut of the care						30,7								
A 4 O F O O F O O O	Dill Cor	Bill Cardinar		Î	Bort Gamble Bath	בו בי בי	;	I ISEPA/I	LISEDA/LISCOE 1998 / NEWEIELDS BIONS7	/ NEWER	II DS RIONS7	11.lan09		•
1 100-000-000		200	_		0.00	Č	-							
					TAW	ER Q	WATER QUALITY DATA	ATA						
TEST CONDITIONS				νB	00 (mg/L) > 3.7	N 4	TEMP (c)	ა A-	SALINITY (ppt) 31 ± 2	7.8	_{рн} 7.8±0.5			
C) IENT/ NEWEIEI DS ID	CONCENTRATION	DAY	2		D.O.		TEMP.	S	ALINITY		рН	Date	Jech	החונית
	value units			meter	mg/L	meter	ငိ	meter	ppt	meter	unit			
Comp C-L / .	10 %	0	≧	4	8.2	4	15.9		32	_	7.9	1/4/09	4	
Comp C-L / .	10 %		>	ج	.+ o	F	<u>و</u> .	_	32	_	P. F	((8	MMB	
Comp C-L / .	10 %	2	2	4	ታ 2.ት	=	18.7		32		7.8	illa	な	Z Z
Comp C-L / .	10 %	3	З	ټ.	7.3	۳	<u>a</u>		32		レア	1/10	Ş	
			_	છ	(o. (o	W	でで	w	3 9	က	なん	1/11	a	
		·	2		8.9		5. c		33		۔ ہے۔		_	
Comp C-L / .	10 %	4	ω		0,7		19.2		754 284		7.9			
		,	4		6.7		<u>ء</u> 2		<i>3</i> 3		7.8			
			5	*	6,7	*	19.4	*	33	<	7.9	¥	4	
Comp C-L / .	50 %	0	All	14	8.0	4	· ~)	/	23	_	7.8	17/09	*	
Comp C-L / .	50 %	_	>	F	7.1	F	-9 -8	,	υ (γ		50	1.	MMB	
Comp C-L / .	50 %	N	2	F	がた	ナ	£.8.1		33	_	4	ija	K	SU.
Comp C-L / .	50 %	ယ	သ	_ عـ	7.3	ع	9.3	_	짲	-	7.7	01/10	CK	
		;	_	W	ココ	W	ر ط:ح	W	36	w	7.9	1////	Sp	
		; ;	2		7,0		S b l		بى ك		7,9	200 17-16		
Comp C-L / .	50 %	4	ω		6,9		<u>S</u> 61		28	*******	6 ,0			
		······	4		6.6		la 4		36	1	78			
			5		7.1	¥	19.2	V	36	6	7.B	*	Ψ	
Comp C-L / .	100 %	0	ΑII	4	8.0	ተ	19.5		745		7.8	1/7/09	7	
Comp C-L / .	100 %	_	>	شك	ر او ا	t	(a)		78		5.4	18	Smy	
Comp C-L / .	100 %	2	2	4	7.0	Ţ.	19.2		34		-3 -h	1)a	J	Ø↓
Comp C-L / .	100 %	3	3	4	7.4	4	ાવ.પ	-	35	_	7.8	1/10	Ş	
			>	ν .	7.3	¥	hibl	W	34	S	7.9	1/11	Z	
			2		7,4		19.Z		33		ئ		_	
Comp C-L / .	100 %	4	ω		7,2		19.5	· · · · · · · · · · · · · · · · · · ·	36	-	7.9			
			4		,۲	∢_	رم'>		ν V		0,8			
		- ;	5	4	7,2		[a.S		24	6	ه. د	<	V	

Page	of
0-	

Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
City of New port	1		4
maring Park	Menidia		ſ

PRETEST / INITIAL / FINAL / OTHER (circle one) DAY of TEST: 9 OVERLYING (OV) / POREWATER (PW) (circle one)

Calibration Stan	dards Temperature	Sample temperature should be
Date:	Temperature:	within ±1°C of standards
1)7/09	19	temperature at time and date of
		analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sulf. mg/L
Control		1/4/09 +	0.0767	19	1/7/09 +	И	NA	NA	NA
Site Water			0.00				- {	1	\
C-L	10		0.00						
C-L	50		0.00						
C-L	100		0.00						
C-U	100		0.00						
	50		0.00						
C-4	10	\ \	0-00	4	1	7	V	W	W
,									

96 HOUR SUSPENDED PARTICULATE PHASE TEST DATA SHEET 3

OBSERVATIONS KEY

N = normal

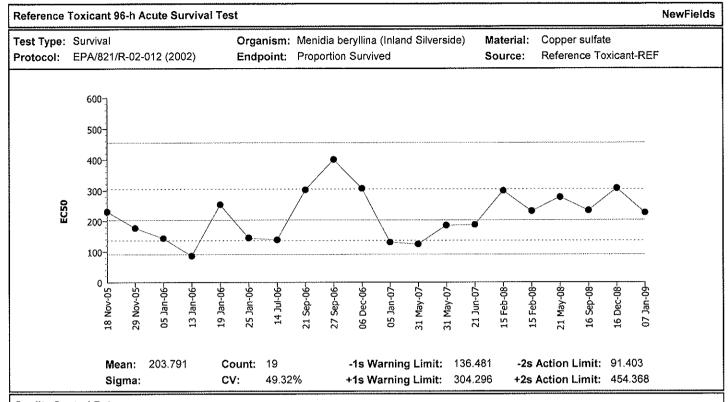
LOS= loss of equilibrium

Q = quiescent

SUR= surfacing Comp C-U Comp C-U / Comp C-U Site CLIENT/ NEWFIELDS ID Control / City of Newport NEWFIELDS Water 100% 10% 50 % 0% % DC = discoloration
OB = on bottom
J = jumper
NB = no body REP NUMBER ωNH 5 4 ωΝμ ωNH 4004 Marina Park species Menidia beryllina 148 NAIDINHOST #ALIVE : #DEAD 660g 1/8/09 000 000 00 SURVIVAL & BEHAVIOR DATA 8 TECHNICIAN DATE 0000 #ALIVE : #DEAD 3 c 6 2 2 0 <u>0</u> ō ō ō 6 0 S Ö 5 $\frac{1}{a}$ 600 0,00 0000 a 6 0 Ø Ø $o \, \sigma$ NEWFIELDS JOB NO. 1105-005-860 931 SST ۲ DATE 020 #ALIVE : #DEAD TECHNICIAN ō 828 60 00 ō 00000 000 0000 0 G 0 PROJECT MANAGER Bill Gardiner 55 22262522 ころころ 7 000 0 0 0 BATE 00000 00000 TECHNICIAN 30.00 800c u Ö 00-0000 O 0

96 HOUR SUSPENDED PARTICULATE PHASE TEST DATA SHEET 3

OBSERVATIONS KEY


N = normal

LOG= loss of equilibrium
Q = quiescent
SUR= surfacing Comp C-L Comp C-L Comp C-L CLIENT/ NEWFIELDS ID City of Newport NEWFIELDS CONC. REP INITIAL Value units REP NUMBER 100% 50 % 10% DC = discoloration
OB = on bottom
J = jumper
NB = no body ωΝμ ψ. Cu LD Marina Park species Menidia beryllina #ALIVE #DEAD TECHNICIAN *G0* 000 10/09 0000 00 SURVIVAL & BEHAVIOR DATA 88 TECHNICIAN DATE 55 #ALIVE : #DEAD õ õ õ ô đa $\overline{\circ}$ 52 ō <u>-</u> e 10 00000000 00 Ø NEWFIELDS JOB NO. 1105-005-860 120 ح 10 ح WALINE : #DEAD : BATE TECHNICIAN 5986 800€ 2 O ō 00000 0000 0 00 PROJECT MANAGER Bill Gardiner SIGN TECHNICIAN Q2 DATE ଟିଟିଟି ଓଡ**଼** 00 #ACIVE #DEAD \mathcal{Q}_{\bullet} 98 δ ıδ م ٍو 90 0000 G 00 0 111 7

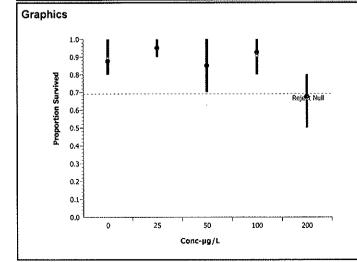
1/7/2009 Menidia SPP Test Survival Page 2

Report Date:

28 Jan-09 4:51 PM

Qualit	y Contr	ol Data								
Point	Year	Month	Day	Data	Delta	Sigma	Warning	Action	Test Link	Analysis
1	2005	Nov	18	231.0145	27.22398	0.31276	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		00-5400-7163	12-4250-6835
2			29	177.3950	-26.3955	-0.34600			09-7179-4794	11-4481-7307
3	2006	Jan	5	143.6334	-60.1571	-0.87259			11-9868-2213	07-1919-5333
4			13	86.05408	-117.736	-2.15041	(-)	(-)	06-6412-0123	07-5635-3913
5			19	253.8606	50.07008	0.54799			14-3550-5235	08-7655-3856
6			25	145.0174	-58.7731	-0.84867			09-8902-4433	10-2133-1793
7		Jul	14	138.7884	-65.0022	-0.95818			12-3489-2800	05-4639-7387
8		Sep	21	301.4977	97.70718	0.97696			13-2437-4560	13-4184-0272
9			27	400.0000	196.2094	1.68211	(+)		06-7939-8708	18-0414-2219
10		Dec	6	306.3108	102.5202	1.01646	(+)		13-1351-8433	14-1844-9693
11	2007	Jan	5	130.3407	-73.4498	-1.11482	(-)		10-8312-3501	05-6092-7194
12		May	31	124.1810	-79.6095	-1.23558	(-)		07-3393-4206	09-0298-1066
13			31	185.8127	-17.9778	-0.23036			15-1085-6486	07-8998-8487
14		Jun	21	187.8662	-15.9244	-0.20295			11 - 4444-5191	09-2989-1578
15	2008	Feb	15	298.8723	95.08178	0.95514			09-0873-1841	02-2843-3056
16			15	232.3128	28.52228	0.32674			02-3273-3535	02-4532-0088
17		May	21	277.7252	73.93468	0.77210			09-4275-9770	06-5552-2016
18		Sep	16	234.4507	30.66018	0.34959			15-9104-3417	05-6930-9029
19		Dec	16	306.7106	102.9200	1.01972	(+)		14-9978-8744	16-1416-6951
20	2009	Jan	7	227.3526	23.56208	0.27290			07-0376-1286	14-5735-1267

CETIS Analysis Detail


Comparisons: Report Date:

Page 1 of 1 26 Jan-09 2:46 PM

Analysis:

15-4413-4731

Reference To	oxicant 96-	h Acute	Surviva	l Test										NewField
Endpoint		•	Anal	ysis Type		Sample I	Link	Con	trol L	ink D	ate An	alyzed	Version	
Proportion Su	ırvived		Com	parison		07-0376-	128	3 07-C	376-1	286 2	6 Jan-0	9 2:46 PN	/ CETISV	1.1.2
Method			Alt I	l Data Ti	ransform	Zeta	N	IOEL	LO	EL '	Toxic U	nits (ChV	PMSD
Dunnett's Mul	ltiple Comp	arison	C > T	Angula	r (Corrected))	1	00	200)	1		141.421	21.14%
Group Comp	arisons		1											
Control	vs Co	nc-µg/L		Statistic	Critical	P-Value)	MSD			cision(
Dilution Wate	r 25			-1.1032	2.35615	0.9808		0.238	53	No	n-Signif	icant Effe	ct	
	50			0.28643	2.35615	0.6951		0.238	53	No	n-Signif	icant Effe	ct	
	100)		-0.7528	2.35615	0.9549		0.238	53	No	n-Signif	icant Effe	ct	
	200)		2.47063	2.35615	0.0405		0.238	53	Sig	nificant	Effect		
ANOVA Tabi	е								·					
Source	Su	ım of S	quares	Mean Squa	re DF	F Statis	tic	P-Val	ue	De	cision(0.05)		
Between	0.3	3200928	3	0.0800232	4	3.90		0.022	89	Sig	nificant	Effect		
Error	0.3	3074808	3	0.0204987	15									
Total	0.6	3275735	52	0.1005219	19									
ANOVA Assu	umptions													
Attribute	Te	st		;	Statistic	Critical		P-Val	ue	De	cision(0.01)		
Variances	Ba	rtlett			1.10293	13.2767	0	0.893	81	Eq	ual Vari	ances		
Distribution	Sh	apiro-W	/ilk W	1	0.95540			0.456	57	No	rmal Di	stribution		
Data Summa	ary				Orig	inal Data						Transfor	med Data	
Conc-µg/L	Control [*]	Туре	Count	Mean	Minimum	Maximun	n	SD	Ī	Vlean	Mi	nimum	Maximum	SD
0	Dilution V	Vater	4	0.87500	0.80000	1.00000		0.09574	. 1	1.21884	1.1	0715	1.41202	0.14512
25			4	0.95000	0.90000	1.00000		0.05773	: 1	1.33053	1.2	4905	1.41202	0.09409
50			4	0.85000	0.70000	1.00000		0.12910	1	1.18984	0.9	9116	1.41202	0.18182
100			4	0.92500	0.80000	1.00000		0.09574	. 1	1.29506	1 ,1	0715	1.41202	0.14695
200			4	0.67500	0.50000	0.80000		0.12583	(0.96872	0.7	'8540	1.10715	0.13389
Data Detail														
Conc-µg/L	Control	Туре	Rep 1	Rep 2	Rep 3	Rep 4	Rep	5	Rep 6	R	ер 7	Rep 8	Rep 9	Rep 10
0	Dilution V	Vater	0.80000	0.80000	0.90000	1.00000								
25			0.90000	1.00000	0.90000	1.00000								

0.70000

0.80000

0.70000

0.90000

0.90000

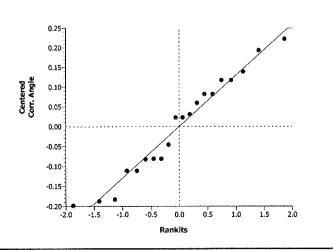
0.80000

0.80000

1.00000

0.70000

1.00000


1.00000

0.50000

50

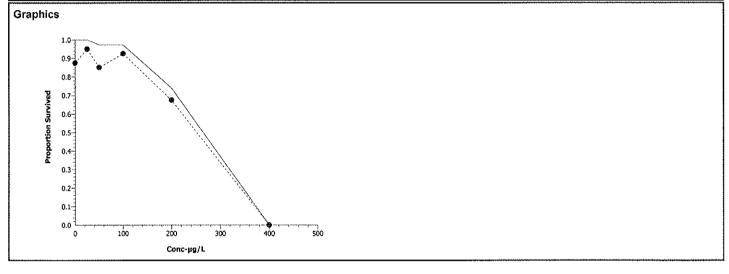
100

200

Spearman-Karber:

Report Date:

Page 1 of 1


Analysis:

26 Jan-09 2:46 PM 14-5735-1267

CETIS Analysis Detail

Reference Toxicant	96-h Acute Survival	Test						NewFields
Endpoint	Analy	sis Type		Sample Link	Co	ntrol Link	Date Analyzed	Version
Proportion Survived	Trimn	ed Spearma	n-Karber	07-0376-1286	07-	0376-1286	26 Jan-09 2:46 PM	CETISv1.1.2
Spearman-Karber C	ptions					Point Estir	nates	
Threshold Option	Lower Threshold	Trim	Mu	Sigma		EC50/LC50	95% LCL	95% UCL
Control Threshold	0.125	0.00%	2.3567	0.0235989	4	227.35260	203.93980	253.45320

Data Summa	ary			Calcu	lated Variate	(A/B)			
Conc-µg/L (Control Type	Count	Mean	Minimum	Maximum	SE	SD	Α	В
0 0	Dilution Water	4	0.87500	0.80000	1.00000	0.01954	0.09574	35	40
25		4	0.95000	0.90000	1.00000	0.01179	0.05773	38	40
50		4	0.85000	0.70000	1.00000	0.02635	0.12910	34	40
100		4	0.92500	0.80000	1.00000	0.01954	0.09574	37	40
200		4	0.67500	0.50000	0.80000	0.02569	0.12583	27	40
400		4	0.00000	0.00000	0.00000	0.00000	0.00000	0	40

Page 1 of 1

CETIS Data Worksheet

Link:

Report Date: 26 Jan-09 2:46 PM 07-0376-1286

Reference To	xican	t 96-h	Acute	e Survival Te	st				NewFields
Start Date: Ending Date: Sample Date:	11 J	an-09	04:30 05:00 04:30	PM Proto	ies: Menidia I ocol: EPA/821 rial: Copper s	/R-02-012 (2002)	Sample Code: Sample Source: Sample Station:	1329533958 Reference Toxicant P070930.99	
Conc-µg/L	Code	Rep	Pos	# Exposed	# Survived		Notes		
0	D	1	12	10	8				
0	D	2	11	10	8				
0	D	3	7	10	9				
0	D	4	23	10	10			VW1-1 (
25		1	20	10	9			1184 AND STORY STORY	
25		2	2	10	10			~~~~~~~~	
25		3	1	10	9			· · · · · · · · · · · · · · · · · · ·	
25		4	17	10	10				
50		1	21	10	7		A.W. (W. (W. (W. (W. (W. (W. (W. (W. (W.		MINE MAN MENONSKY ANDREW WAS RECOVER FOR THE CONTRACT
50		2	14	10	9				
50	,,	3	8	10	8	,			
50	I	4	19	10	10				
100		1	18	10	8				
100		2	24	10	9				
100		3	16	10	10				v20010000000000000000000000000000000000
100		4	6	10	10				-,,-,
200		1	13	10	7			,,	
200		2	15	10	8		· · · · · · · · · · · · · · · · · · ·		
200		3	22	10	7			/44A 4/	
200		4	9	10	5				
400	ļ	1	4	10	0				
400	ļ	2	5	10	0				
400	,,_	3	10	10	0				
400	<u> </u>	4	3	10	0				

REFERENCE TOXICANT TEST SURVIVAL DATASHEET

				SURVIVAL			ŀ						
NEWFIELDS								SPECIES	1.4	enidia i	hondli	na	
LIENT City of Newport	PROJEC	Marina F) a ele	NEWFIELDS JOB N	O. PRO	DJECT MANAGER Bill Gardi		ŧ	IELDS LA	BORATORY ole Bath	PRO	TOCOL	
City of Newport		Manna r		/IVAL & BEH	HAVIOR		ner	Port	Gami	ne Bath	US	EPAUSCO	F 1888
OBSERVATION K	EY	· <u>-</u> ·		DAY 1		DAY	2		DAY 3			DAY 4	
N = normal LOE= loss of equilibri	(Im			DATE / 1		DATE, /		DATE			DATE		
Q = quiescent		TIAL # OF OR	GANISMS	1/8/0	9	1/9/0	9		lolo		Ma	loa	
DC = discoloration NB = no body			- CANONIO	TECHNICIAN	***************	TECHNICIAN		V/ TECHNICI	· U-	7) V	109	
F= Floating on Surface	e	<u>10</u>		BH		BL		,	n		1	0	
CLIENT/ NEWFIELDS ID	CONC.	REP	INITIAL			'		C	K			/	
	value units	1	NUMBER	#ALIVE #DEAI	OBS	#ALIVE : #DEA	O OBS	#ALIVE	*DEAD	OBS V	#ALIVE	*DEAD	OBS A I
		2	1 🗸	10 0	Ň			9	ĭ	N	8		Ŋ
Ref.Tox copper	O mg/l	3		100	N	100	W/	9		N	9	0	+
		4		10 0	N	100	W	io	l	N	lo		
		1		10 0	Managara N	100	N	9	<i> </i>	J	9	0	
		2		10 0	Μ.	100	\mathcal{N}	10	0	N	Ю	0	*******
Ref.Tox copper	25 mg/l	3		9 1	Ŋ	90	M	9	O	N	9	O	*******
		4		100	N	100	W	10	D	N	w	0	*******
		1		8 2	N	80	W	8	0	N	7	1	
		2		10 0	Ν	100	N	9	1	N	9	0	
Ref.Tox copper	50 mg/i	3		100	Ν	100	N	lo	Ø	N	8	2	*******
		4		100	N	100	V \	10	O	N	Ю	ರ	
		1		9 1	N	8 1	N.	8	0	N	8	0	
		2		9 1	N,	90	N	9	0	N	9	0	
Ref.Tox copper	100 mg/i	3		100	Į N	100	N,	lo	0	N	lΟ	0	
		4 <i>mumumum</i>			\mathcal{N}	100	W W	O	O Ummum	N)	الما		min
·													
		1		0 2	N,	80	M	8	O	N	7		
		2		82	Ν,	80	N	8	0	N	8	ତ	ļ
Ref.Tox copper	200 mg/l	3		22	Ν,	80	19	7		N	<u> </u>	0	<u>[</u>
		4. <i>!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</i>		7 3		70					5		
		1		0 10		<u>- - - </u>			***********				
D-/T-	400 -	2		1 9	N	01							
Ref.Tox copper*	400 mg/l	3		4 6	Q	04							
		4 <i> </i>											

1/7/2009 Menidia SPP Test Cu RTSurv Page 1

	· · · · · · · · · · · · · · · · · · ·	Ref.Toxcopper		:			Ref.Toxcopper					Ref.Toxcopper				Ci lenzi nemelei DS ID	TEST CONDITIONS		Port Gamble Bath	NEWFIELDS LABORATORY	A A D D D D D D D D D D D D D D D D D D	City of Newport	CLIENT	NEWFIELDS
		50 mg/L					25 mg/L					0 mg/L			value units	CONCENTRATION			FSW	DILUTION WATER BATCH	Pill Co	Mari	PROJECT	
4	ယ	2	->	0	4	ω	2	_	0	4	ယ	2	>	0		ÇA.			FSW010609	WATER BATCH		Marina Park		
4	ω	2	-1	ΑII	4	ω	2	>	A	4	ω	2	_	ΑII		Ž,					-			
$\frac{\omega}{\omega}$	ہ۔	عہ	4	ㅗ	3	٦٢/	7	4	4	3 (2	2	チ	モ	meter		v 8			VIIINAUO	200	NATIONAL PROPERTY.	SPECIES	
8.2	6.9	7.1	7.0	8.0	6.5	6.8	7.0	4.0 0.4	0.8	is e	6.7	76	6.9	ユタ	mg/L	D.O.	00 (mg/L) > 3.7		- 64	QUANTITY OF STOCK ACTUAL	4 570 m	Menidia beryllina		Re Wa
$\frac{\omega}{\omega}$	٦	ے	۶	4	3	4	ユ	F	۲	W	2	٦	F	7	meter			WATE	1.67254	OCK ACTUAL	7 2	beryl		ferer ter (
19.73	19,1	19.6	ام. ٩	18.0	19.7	[4.1	7.61	19.8	18.0	19.5	19.0	5.81	18.8	18,0	ငိ	TEMP.	TEMP (C) 20 ± 2	WATER QUALITY	\$ -(lina		Reference Toxicant Test Water Quality Datasheet
1 3		~	<i></i>	_	7 3	_	_	<i></i>		W			_	_	meter		s			QUANT			PROTOCOL	cican Data
\$\$	32	تع	32	32	33	32	به به	48	32	ω 3	32	ىلا	32	32	ppt	SALINITY	SALINITY (ppt) 31 ± 2	DATA	200X	QUANTITY OF DILUENT ACTUAL	יייייייייייייייייייייייייייייייייייייי	Port Gamble / Bath	COL	ıt Test ısheet
$\overline{\omega}$	~				S		_		-	3		_	_	_	meter		7		2000.05	LUENT ACTUAL	3	nble / I		
6. L	バン	7.8	7.8	3.E	7.9	7.7	7.7	8.4	8.F	7.8	7.6	7.5	5.4	£,¢	unit	PH	_{Рн} 7.8±0.5					Bath		P07
1/11	1/10	1/4	18	1/2/09	1711	01/1	1/9	1/8	11109	11/11	01/1	1/9	1/8	PO 1 1 KZ		Care	?		TS 1/4/09	INITIALAND DATE	14 L	07Jan09	TEST START DATE	0930.c
R	R	вн	MMB	ス	CR	ar	BH	MMÖ	ひ	CR	Je.	BH	MMB	\ D		ieco	*		USEPA/USCOE 1998 / NEWFIELDS BIO067		500	900g		99
	/	mmys	MARC	X		/	Amb O	Minder	X		7	Jung.	Marco	X	X X	Ω			98 / NEWFIEL	PROTOCOL	_ ا	1630	TIME	
		X	Z	*			X	X	Bright			X	X	Smir	Ì	FEEDING			DS 810067	Ç	<u> </u>	Q		

1/7/2009 Menidia SPP Test Cu RTWQ

Reference Toxicant Test Water Quality Datasheet

NEWFIELDS

			ITY DATA	WATER QUALITY DATA		
/ NEWFIELDS BIO067	USEPA/USCOE	75 1	2000.05	1.5 7254~1	FSW010609	Port Gamble Bath
PROTOCOL	_	ATAC GNA IAITINI	QUANTITY OF DILUENT ACTUAL	QUANTITY OF STOCK ACTUAL	DILUTION WATER BATCH	NEWFIELDS LABORATORY
	11Jan09		2000 mL	1.572 mL	Bill Gardiner	1105-005-860
TIME		TEST END DATE	QUANTITY OF DILUENT TARGET	QUANTITY OF STOCK TARGET	PROJECT MANAGER	NEWFIELDS JOB NUMBER
(4.9)	07Jan09		Port Gamble / Bath	Menidia beryllina	Marina Park	City of Newport
TIME , >	TDATE	TEST START DATE	PROTOCOL	SPECIES	PROJECT	CLIENT

		Ref.Toxcopper					Ref.Toxcopper					Ref.Toxcopper			ODERAS SECTION	CI JENT/ NEWEIEI DS ID	TEST CONDITIONS
		400 mg/L					200 mg/L			·		100 mg/L			value units	CONCENTRATION	
4	3	2	_	0	4	သ	2	>	0	4	3	2	1	0		3	DAY
4.	သ	2	_	All	4	ω	2	_	All	4	3	2	-7	ΑII		į	939
)	1	ع	£	÷	8	عـ	-2-	t	h	S	ع	ے۔	£	4	meter		
		7.3	ب ب	8.1	7.0	6.7	70	7.1	1.8	6.8	6.6	6.8	4.4	1.8	mg/L	D.O.	00 (mg/L) > 3.7
		4	F	ナ	3	ع	Ч	4	ᅩ	3	<u>٦</u>	2_	4	h	meter		
		19.7	4,06	18.0	19.6	<u> </u>	19.7	до.o	18.0	19.6	19,1	19.7	ة. OG	18.0	ဘိ	TEMP.	TEMP (C) 20 ± 2
		~	-		S			_	_	3	-				meter		. &
		30	t) en	28	23	32	32	45	သည	33	32	23	32	48	ppt	SALINITY	SALINITY (ppt) 31 ± 2
		(_	_	W		_	~-	1	3	- 		<u></u>	_	meter		7
		7.9	7.9	8-t	7.9	7.8	7.8	7.9	3.4	7.9	7.8	7.8	7.9	8.F	unit	Hq	^{рн} 7.8±0.5
		1/9	1/8	1 FO14 1	1/11	alh	1/9	18	b0 ± 11	11/11)/10	1/9	1/8	12/12		7	
		ZZ.	Sww	ス	a	R	НВ	MMB	Z	OR	a	HΕ	MIMES	J		i de	7
	7	amm	Ward.	X			Smm	Mace	X		7	Smn	NAME OF THE PERSON OF THE PERS	X	AX	· ·	
		X	X	8			X	X	Die			X	X	STATE OF THE PERSON OF THE PER	R		

ORGANISM RECEIPT LOG

Date:		Time:	· · · · · · · · · · · · · · · · · · ·	NewFields E	Batch No.
1/6/0	9	1436	\supset	ABS 1	5 46 mb
Organism:	idia Bery	Illing	Source:	yutic BioSy	stens
Address:	In File			Invoi	ce Attached No
Phone:	h File		Contact:	cott Kellman	
No. Ordered: 775		No. Received:	·	Source Batc	h: os hotch
Condition of Orga 14dead/10			Approxima	ite Size or Age:	
Shipper:	FREEX		B of L (Tra		1546
Condition of Con	tainer:		Received E		
Confirmation of II	O of Organism:	Yes No)	Technician (I	
Notes:					
			<u> </u>		
pH (Units)	Temp. (°C)	D. (mg	Ο.	Conductivity or Salinity (Include Units)	Technician (Initials)
7.2/7.2	18.6/18.	7 11.9/1	3.0	29/29	ВН
Notes:					

96 HOUR SUSPENDED PARTICULATE PHASE TEST WATER QUALITY DATASHEET

CLIENT	PROJECT		6	SPECIES	l			DILUTION WAT	WATER BATCH			TEST START DATE		TIME
City of Newport	Marir	Marina Park			Mysidopsis bahia	sis bah	iia		FSW010609	10609		07Jan09	w	ं क
NEWFIELDS JOB NUMBER	PROJECT MANAGER	ER		NEWFIELDS LABORATORY	ABORATOR			PROTOCOL	2			TEST END DATE		TIME
1105-005-860	Bill G	Bill Gardiner			Port Gamble Bath	nble Ba	ith	USEPA/US	/USCOE 1998	/ NEWFIE	COE 1998 / NEWFIELDS BIO067	11Jan09	9	1800
					WA:	TER Q	WATER QUALITY DATA	ATA						
TEST CONDITIONS				DO (mg/L) > 3.7	_{гд/L)} , 7	N) _	TEMP (C)	sar ა	SALINITY (ppt) 31 ± 2	7.8	7.8±0.5			
CI IENT/ NEWEIEI DS ID	CONCENTRATION	DAY	Ę.	٥.٥.).		TEMP.	s	ALINITY		Ηd	Date	Tech	FEEDING
	value units			meter	mg/L	meter	ငိ	meter	ppt	meter	unit			Ar Bri
Control / .	0 %	0	All	4 7	7.9	ナ	18.8	_	32	<u>/</u>	4.4	1/2/07	(
Control / .	0 %	1		4	(₎ . વ	F	4.61		32		4.6	(1,8	Shrin	7
Control / .	0 %	2	2	<u>بر</u> ا	5.)	ع	19,5		دی دع	_	2.5	1/ ما	ИЗ	res ox
Control / .	0 %	3	ယ	4 0	6.3	누	19.3		33		7.6	1/10	Ş	
		•		3 6	(b . 3	W	19.3	W	34	W	7.9	١/١١	5	
			2	<u>a</u>			رم د به		7		7	/		
Control / .	0 %	4	ω	<i>₽</i>	٦,		19.4		<i>ک</i> ر	·	2,9			
			4	<u>0</u>	o'		(q,3		ئ 2		2.5		,	
			5	6	6.2	¥	19.3	5	34	4	7.9	÷	·	
Site Water / .	0 %	0	A∥	4 9	9.3	1	18.6)	34	/	7.7	1/7/09	1	
Site Water / .	0 %	_	>	د 4	٠٠٤	Æ	19.8		35	, 	P. F.	1/8	MAG	A 1964
Site Water / .	0 %	2	2	٠	5.4	2	19.5	_	35	_	3.5	1/01	BL	75 ST
Site Water / .	0 %	3	သ	ч. 5	5.7	یک	19.7		35		7.6	1/10	£	
				3 8	Z.3	S	ام.4	W	36	W	<i>ا</i> م	1/(1)	<u> </u>	
			2	の 			ر <u>م</u> د:	***************************************	ያ የ		7,0	•		
Site Water / .	0 %	4	ω	9	, 7		かり		36		7.0			
	_		4	S.	Ŕ		19.3		38		٦,٥			
			5	\ \ \	Q	~	تواح	۶	ጲ	۴-	レロ	€	4	

96 HOUR SUSPENDED PARTICULATE PHASE TEST WATER QUALITY DATASHEET

7.9
7,0
7.9
3 79
1 75
1 7.6
1 8.0
/ 8,3
レフタ
7.9
7.9
٦, ٠
3 7.9
1 7.5
<u> </u>
7 7.9
33 / 8.0
7.9
34 7.9
7.9
7
2 7 9
1.5
. ~
6.5
meter unit
Hq
7.8 ± 0.5
USEPA/USCOE 1998 / NEWFIELDS BIO067
FSW010609
DILUTION WATER BATCH

Owc or iliolog

96 HOUR SUSPENDED PARTICULATE PHASE TEST WATER QUALITY DATASHEET

					WATE	RQUA	WATER QUALITY DATASHEET	SHEET						
CLIENT	PROJECT		-10	SPECIES				DILUTION	DILUTION WATER BATCH			TEST START DATE		TIME
City of Newport	Mari	Marina Park			Mysidopsis bahia	sis bah	g.		FSW010609	10609		07Jan09		5201
NEWFIELDS JOB NUMBER	PROJECT MANAGER	SER		NEWFIELD	NEWFIELDS LABORATORY			PROTOCOL	۲			TEST END DATE		TIME
1105-005-860	Bill G	Bill Gardiner			Port Gamble Bath	ıble Ba	#	USEPA	USEPA/USCOE 1998 / NEWFIELDS BIO067	/ NEWFIE	ELDS BIO067	11Jan09		
					TAW	ER Q	WATER QUALITY D	DATA						
TEST CONDITIONS				νg	DO (mg/L) > 3.7	ζ.	$TEMP(C)$ 20 \pm 2	SALI 3	SALINITY (ppt)	3.7	^{рн} 7.8±0.5	,	I	
CLIENT/ NEWFIELDS ID	۱ ۲	DAY	Ţ		D.O.		TEMP.	ı,	ALINITY	I	pН	Date	eci	PECDING
	value units			meter	mg/L	meter	റ്	meter	ppt	meter	unit			Am pri
Comp C-L / .	10 %	0	₽	4	2.8	4	19,1		22	/	8.5	1/4/04	1	1
Comp C-L / .	10 %	_	>	4	6.3	F	<u>व</u> श	_	23	_	- ያ	(1,8	MMB	1945) A
Comp C-L / .	10 %	2	2	2ـ	5.	۲	19.6	_	is v	_	7.6	["/a	BH	元 名
Comp C-L / .	10 %	3	3	Ч	5.9	Ч	19.6	_	32	_	7.6	41/10	2	
			_	W	5.8	W	اه ح	W	34	W	7.8	1/11	R	
			2		べい		シシ		78		7,8	*		
Comp C-L / .	10 %	4	ω		9		 ≥ ≥		39		7,9			
			4		9,7 S		<u>ء</u> کا		48		2.7	(
			5	<u>@</u>	5.7	V	\9.S	€	34	4	7.8		F	
Comp C-L / .	50 %	0	₽	4	8.1	4	19.2		33		7.8	1/7/09	1	J. Samuel
Comp C-L / .	50 %		1	ょ	ર્જ. જ	F	19.8 8	_	S S		4. P.	R	NAVE	1747 A
Comp C-L / .	50 %	2	2	ع	4	ح	19.6		22		7.6	1 / 0	Poli	まる。空
Comp C-L / .	50 %	ယ	ω	エ	7.5	r	19.7		34		7.5	1/10	CR	X
				IJ) []	w	19.5	ω	GG.	W	2,5	1//11	12	
Comp C-L / .	50 %	4	ωκ		ha N		2 2 V		ې در		2,00			
			4	<	9.	_	<u>ہ</u> ما		ω γ		7.9			
			5		8.8	Q	[9.S	W	33	٦	7.9	<	1	
Comp C-L/.	100 %	0	≙	1	8.1	V	19.4		34		7.8	60/4/	d	111111111111111111111111111111111111111
Comp C-L / .	100 %			4	5	÷.	9.8	_	ب	-	بر 9	(K	MM B	
Comp C-L / .	100 %	2	2	ع	かっ	ح	-a.6	_	4		7.6) d	Med	TO BAN
Comp C-L / .	100 %	ယ	3	4	5.8	4	19.8	<u>. </u>	35	_	7.6	1/10	R	
				C	- e	W	19.5	W	35	W	レス	11/11	Sur-	
			2		2,8		ā N		ζ	***************************************	7.8		_	
Comp C-L / .	100 %	4	ω		2,5		2.0 		g		7,8			
			4		7.5	<u> </u>	Sbl		38		2,9			
			Çī	۶	ر م	(ري م	€	(ب س	6	7.8	€	T	

Page	of

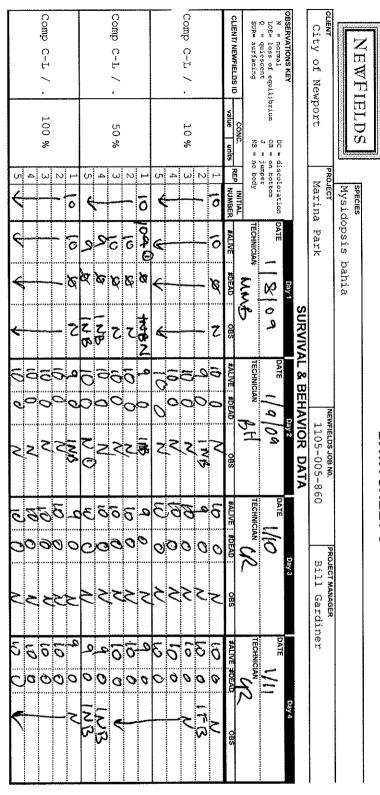
Ammonia Analysis Total Ammonia (mg/L)

Client/Project:	Organism:	NewFields Test ID:	Test Duration (days):
City of Newport/	Myard		4
masina	1 10.7.51.00		1/

PRETEST / INITIAD / FINAL / OTHER (circle one) DAY of TEST: OVERLYING (OV) / POREWATER (PW) (circle one)

Temperature:	within ±1°C of standards
19	temperature at time and date of
	analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sulf. mg/L
Control		1/7/09 +	0.0767	19	1/7/091	M	MA	NA	NΑ
Control Site water			\$ 0.00						
C-L &	10		10.00						
C-L	50		0.00						
C-L	100		0.00						
C-U	10		0.00						
C-U	50		y ⊙ <i>.⊙0</i>						
C-4	160	V	0.00	V		V	V	V	

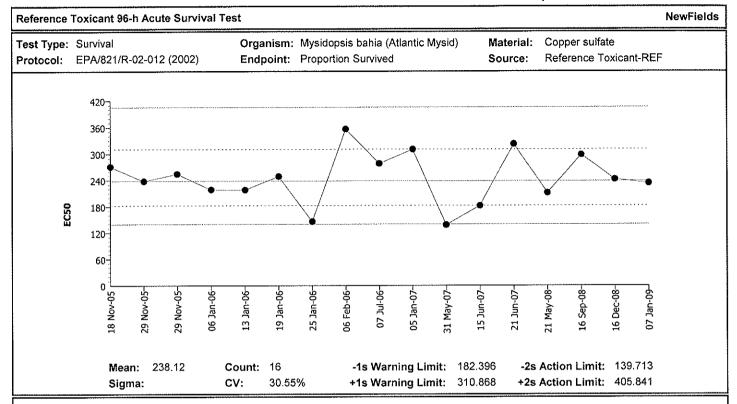

96 HOUR SUSPENDED PARTICULATE PHASE TEST **DATA SHEET 3**

OBSERVATIONS KEY

N = normal

100= loss of equilibrium
Q = quiescent
SUR= surfacing City of Newport Site Comp Comp C-U Comp C-U CLIENT/ NEWFIELDS 3D Control NEWFIELDS C-U Water conc. 100 50 % 10% o % 0% DC = discoloxation
OB = on bottom
J = jumper
NB = no body REP NUMBER ωN-5 чαша U 0 0 4 Ω ωΝ Marina Park Mysidopsis bahia SPECIES ō σ σ O TECHNICIAN MMG #ALIVE : #DEAD 5 6 S ō ō ∂હ 5F ō ٤ 200 Ø ড Ę @ 60 B छ छ **SURVIVAL & BEHAVIOR DATA** Z 0 22222 ح Z TECHNICIAN ALIVE : #DEAD : *≥*005 19/09 NEWFIELDS JOB NO. 1105-005-860 222 ₹ 3 TECHNICIAN (A) DATE #ACIVE : #DEAD 000000000 00000 PROJECT MANAGER Bill Gardiner フラクダ 0200 2005 a BLVG 55-6 5 WALIVE #DEAD 0000 0.0 00 0 900 0 00 00 Ó NO IS ر 23

96 HOUR SUSPENDED PARTICULATE PHASE TEST DATA SHEET 3



(1) TE MALE 1/9/07/14

000-173-102-3

Report Date:

26 Jan-09 4:17 PM

Qualit	y Contr	ol Data								
Point	Year	Month	Day	Data	Delta	Sigma	Warning	Action	Test Link	Analysis
1	2005	Nov	18	270.9431	32.82316	0.48439			04-9207-2519	06-7062-9566
2			29	237.8382	-0.28174	-0.00444			13-3749-4170	12-0215-0194
3			29	254.1857	16.06576	0.24491			14-4179-4943	15-0893-7739
4	2006	Jan	6	218.4655	-19.6544	-0.32314			04-0317-1797	12-3195-9925
5			13	217.9948	-20.1251	-0.33123			16-1881-1237	12-7567-2246
6			19	248.7937	10.67376	0.16448			08-0452-0770	17-2979-4106
7			25	145.5691	-92.5508	-1.84597	(-)		11-3116-1669	06-2279-5163
8		Feb	6	356.1905	118.0705	1.51051	(+)		10-1630-9590	13-6331-1854
9		Jul	7	278.1486	40.02866	0.58284			02-9682-5563	11-9863-7491
10	2007	Jan	5	310.4012	72.28126	0.99437			10-8470-2803	06-4877-5470
11		May	31	137.8252	-100.294	-2.05102	(-)	(-)	10-1324-7704	03-5962-2699
12		Jun	15	181.7338	-56.3861	-1.01365	(-)		08-4148-7978	10-6333-9348
13			21	322.6705	84.55056	1.13978	(+)		00-4869-4501	07-4507-6179
14	2008	May	21	211.1782	-26.9418	-0.45040			17-4827-0455	10-0698-3422
15		Sep	16	297.9535	59.83356	0.84084			07-0996-4754	04-2869-2915
16		Dec	16	241.8133	3.69336	0.05773			03-2797-2997	02-1235-2262
17	2009	Jan	7	233.2583	-4.86164	-0.07738			00-8997-7963	12-2358-6105

CETIS Analysis Detail

Comparisons: Report Date:

Page 1 of 1 26 Jan-09 3:57 PM

Analysis:

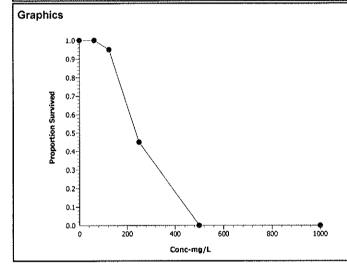
14-7411-8771

· · · · · · · · · · · · · · · · · · ·	· a., c. c = c							Allalysis.		(4-14-11-011
Reference Tox	xicant 96-h Acu	ite Surviva	ıl Test							NewFields
Endpoint		Anai	ysis Type		Sample L		ntrol Link	Date Analyz		
Proportion Sun	vived	Com	parison		00-8997-7	963 00-	8997-7963	26 Jan-09 3:	57 PM CETI	Sv1.1.2
Method		Alt I	H Data 1	ransform	Zeta	NOEL	LOEL	Toxic Units	ChV	PMSD
Steel Many-On	ne Rank	C > .	T Rank			125	250	0.8	176.777	8.16%
Group Compa	arisons	***************************************								
Control	vs Conc-mg	ı/L	Statistic	Critical	P-Value	Ties		Decision(0.05)	
Dilution Water	62.5		18	10	0.7500	4		Non-Significan	t Effect	
	125		14	10	0.2626	4		Non-Significan		
	250		10	10	0.0277	0		Significant Effe	ect	
ANOVA Table										•
Source	Sum of	Squares	Mean Squa	are DF	F Statist	ic P-Va	lue	Decision(0.05)	
Between	1.28870	2	0.4295675	3	65.60	0.000	000	Significant Effe	∍ct	
Error	0.07858		0.0065487	12						
Total	1.36728	660	0.4361161	15	<u></u>					
ANOVA Assur	mptions									
Attribute	Test			Statistic	Critical	P-Va		Decision(0.01		
Variances	Modified			12.99229	5.95254	0.000		Unequal Varia		
Distribution	Shapiro-	Wilk W		0.92162		0.17	909	Normal Distrib	ution	
Data Summar	у			Orig	inal Data			Tra	nsformed Data	3
Conc-mg/L	Control Type	Count	Mean	Minimum	Maximum		Mea			
0	Dilution Water	4	1.00000	1.00000	1.00000	0.0000		11.5	11.5	0
62.5		4	1.00000	1.00000	1.00000	0.0000		11.5	11.5	0
125		4	0.95000	0.90000	1.00000	0.0577		5.5	11.5	3.46410
250		4	0.45000	0.30000	0.60000	0.1291	0 2.5	1	4	1.29099
Data Detail										
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3		Rep 5	Rep 6	Rep 7 R	ep 8 Rep	9 Rep 10
0	Dilution Water	1.00000	1.00000	1.00000	1.00000					
62.5		1.00000	1.00000	1.00000	1.00000					
125 250		0.90000	0.90000 0.30000	1.00000 0.40000	1,00000 0.50000					
Graphics		0.00000	0.30000	0.40000	0.30000					
Grapines										
1.0	•	•	į.			3.0			•	•
0.9			1			2.5-			/	
78 0.8						1.5-		1	<u>/</u>	
<u>}</u> 0.7						1.0				
5 0.6-				1		Centered Rank 0.5			/ •	
Proportion Survived 0.0.00				l		0.0		••••	• • • • • • • • • • • • • • • • • • • •	
£ 0.4				I		-0.5		• /		
0.3				I	i	-1.0-				
0.2						-1.5 -2.0	/	•		
0.1						-2.5-		1		
0.0		····	·····	·····		-3.0	4	1	_1	<u> </u>
	0	62.5 Conc-mg	125	250		-2.	0 -1.5 -	1.0 -0.5 0.0 Rankits	0.5 1.0 1	.5 2.0
		Conc-ma	/L					Rankits		

Spearman-Karber:

Report Date:

Page 1 of 1


Analysis:

26 Jan-09 4:17 PM 12-2358-6105

CETIS Analysis Detail

Reference Toxicant	96-h Acute Survival	Test					NewFields
Endpoint	Analy	sis Type		Sample Link	Control Link	Date Analyzed	Version
Proportion Survived	Trimn	ed Spearma	ın-Karber	00-8997-7963	00-8997-7963	26 Jan-09 4:11 PM	CETISv1.1.2
Spearman-Karber C	ptions				Point Est	imates	
Threshold Option	Lower Threshold	Trim	Mu	Sigma	EC50/LC5	50 95% LCL	95% UCL
Control Threshold	0	0.00%	2.367837	0.0258518	233.25830	207.07770	262.74870

Data Sumn	nary			Calcu	lated Variate	(A/B)				
Conc-mg/	Control Type	Count	Mean	Minimum	Maximum	SE	SD	Α	В	
0	Dilution Water	4	1.00000	1.00000	1.00000	0.00000	0.00000	40	40	
62.5		4	1.00000	1.00000	1.00000	0.00000	0.00000	40	40	
125		4	0.95000	0.90000	1.00000	0.01179	0.05773	38	40	
250		4	0.45000	0.30000	0.60000	0.02635	0.12910	18	40	
500		4	0.00000	0.00000	0.00000	0.00000	0.00000	0	40	
1000		4	0.00000	0.00000	0.00000	0.00000	0.00000	0	40	

Page 1 of 1

CETIS Test Summary

Report Date: Test Link:

26 Jan-09 4:17 PM 00-8997-7963

Reference Tox	cicant 96-h Acu	te Surviv	al Test						NewFields
Test No: Start Date: Ending Date: Setup Date: Comments:	09-1778-3253 07 Jan-09 05:2 11 Jan-09 07:1 07 Jan-09 05:2 P070930.100	8 PM	Test Type: Protocol: Dil Water: Brine:)2)	Duration: Species: Source:	4d 1h Mysidopsis bahia Aquatic Biosystems, CO	
Sample No: Sample Date: Receive Date: Sample Age:	07-9059-4503 07 Jan-09 05:2	10 PM	Code: Material: Source: Station:	790594503 Copper sulf Reference P070930.10	Toxicant		Client: Project:	Internal Lab Reference Toxicant	
Point Estimate Analysis 12-2358-6105	e Summary Endpoint Proportion Sur	vived	% Effe			95% LCL 207.0777	95% UCL 262.7487	Method Trimmed Spearman-Kar	ber
Proportion Su	rvived Summa	ry							
Conc-mg/L	Control Type	Reps	Mean	Minimum	Maximum		SD	CV	
0 62.5 125 250 500 1000	Dilution Water	4 4 4 4 4	1.00000 1.00000 0.95000 0.45000 0.00000	1.00000 1.00000 0.90000 0.30000 0.00000	1.00000 1.00000 1.00000 0.60000 0.00000	0.00000 0.00000 0.02887 0.06455 0.00000 0.00000	0.00000 0.00000 0.05774 0.12910 0.00000 0.00000	0.00% 0.00% 6.08% 28.69% 0.00%	
Proportion Su	ırvived Detail								
Conc-mg/L 0 62.5 125 250 500	Control Type Dilution Water	Rep 1 1.00000 1.00000 0.90000 0.60000 0.00000	Rep 2 1.00000 1.00000 0.90000 0.30000 0.00000	Rep 3 1.00000 1.00000 1.00000 0.40000 0.00000	Rep 4 1.00000 1.00000 1.00000 0.50000 0.00000				
1000		0.00000	0.00000	0.00000	0.00000				

Page 1 of 1

1000

10

10

0

CETIS Data Worksheet

Report Date: Link:

26 Jan-09 4:17 PM 00-8997-7963

								****	00 0001 1000
Reference To	xican	t 96-h	Acut	e Survival Tes	it				NewFields
Start Date: Ending Date: Sample Date:	11 J	lan-09	05:20 07:18 05:20	PM Proto	col: EPA/821	/R-02-012 (2002)	Sample Code: Sample Source: Sample Station:	790594503 Reference Toxicant P070930.100	
Conc-mg/L	Code	Rep	Pos	# Exposed	# Survived		Notes	···········	
0	D	1	14	10	10				
0	D	2	19	10	10				
0	D	3	3	10	10				
0	D	4	12	10	10				
62.5		1	7	10	10				
62.5	***************************************	2	5	10	10				
62.5		3	21	10	10				
62.5		4	6	10	10				
125		1	2	10	9				
125		2	23	10	9		The state of the s		
125		3	13	10	10				
125		4	8	10	10				
250		1	11	10	6				
250		2	1	10	3			****	
250		3	22	10	4				
250		4	18	10	5			····	
500		1	4	10	0				
500	***********	2	17	10	0				
500		3	24	10	0				
500		4	20	10	0				
1000		1	9	10	0		<u> </u>		
1000		2	15	10	0				***************************************
1000		3	16	10	0				

REFERENCE TOXICANT TEST SURVIVAL DATASHEET

NEWFIELDS Mysidopsis bahia PROJEČT NEWFIELDS JOB NO. PROJECT MANAGER City of Newport Marina Park Bill Gardiner Port Gamble Bath LISEPANISCOE 1998 SURVIVAL & BEHAVIOR DATA DAY 3 **OBSERVATION KEY** N = normal DATE LOE= loss of equilibrium DATE Q = quiescent 1/8/09 1110log 1/11/09 INITIAL # OF ORGANISMS DC = discoloration NB = no body 10 TECHNICIAN TECHNICIAN F= Floating on Surface MMB CONC. INITIAL CLIENT/ NEWFIELDS ID REP *ALIVE : #DEAD : #ALIVE : #DEAD : OBS #ALIVE : #DEAD : value | units NUMBER 10 1 10 0 0 0 Ю N O 2 0 10 B 10 0 Ю Ref.Tox.- copper 0 mg/l 3 0 Ø 0 N 0 10 10 10 D 4 Ø 10 () 10 10 0 ر ا 1 Ø 0 10 10 0 10 0 2 10 Ø 0 10 10 10 0 0 62.5 mg/l 0 Ref.Tox.- copper 3 10 10 0 Ø 0 0 w 10 0 N 4 10 10 B 0 W 1 INB 10 B 0 0 9 9 2 B 0 N 10 0 125 mg/l 3 Ø Ref.Tox.- copper 0 0 W 10 0 lo 0 10 Ö 10 4 Ø 0 N W 10 Ю 0 1 10 Ø R 6 \mathcal{O} Q **P** (1) OQ 2 杈 5 À 4 INB 3 Q 0 250 mg/l 2 ч Ref.Tox.- copper 3 10 Ø 0 [MB 4 6 Q Ø 4 AUX 4 10 0 Q N 6 4 Q 1 6 2 2 Q 0 S 9 O 2 4 ١ \mathbf{Q} 0 500 mg/l 0 Ref.Tox.- copper 3 4 0 ١ 6 Q 4 4 0 Ò ŧ 6 1 4 0 Q 6 Q 2 5 2 Q 0 5 Ref.Tox.- copper 1000 mg/l Q 0 a Q 4 6 4 0 N 94

¹ JE, MMB 1/9/08

¹⁵ CR 1/10/09

1/7/2
/lysid SPP Test Cu RTWQ

Reference Toxicant Test Water Quality Datasheet

NEWFIELDS

		Y DATA	WATER QUALITY DATA		
1998 / NEWFIELDS BIO067	1/7 1475 USEPA/USCOE 1998 / NEWFIELDS BIO067	2000.09	3.93671 ml	FSW010609	Port Gamble Bath
PROTOCOL	INITIALAND DATE	CHANTITY OF DILUENT ACTUAL	QUANTITY OF STOCK ACTUAL	DILUTION WATER BATCH	NEWFIELDS LABORATORY
8141	11Jan09	2000 mL	1.672ml 3.43	Bill Gardiner	1105-005-860
TIME	TEST END DATE	QUANTITY OF DILUENT TARGET	QUANTITY OF STOCK TARGET	PROJECT MANAGER	NEWFIELDS JOB NUMBER
1720	07Jan09	Port Gamble / Bath	Mysidopsis bahia	Marina Park	City of Newport
TIME	TEST START DATE	PROTOCOL	SPECIES	PROJECT	CLIENT

QASSING SERVICES		Ref.Toxcopper					Ref.Toxcopper				-	Ref.Toxcopper			ALLEN ALM ILLEVOID	CLIENT/ NEWEIEI DS ID	: TEST CONDITIONS
	y	125 mg/L					62.5 mg/L					0 mg/L	-		vaiue units	CONCENTRATION	.
4	ယ	N		0	4	ω	N	ــــ	0	4	ن ى ٔ	2	ــــ	0		5	
4	3	2	1	IIV	4	3	2		IIV	4	3	2		₽		7	939
3	Ä	کے	F	ዛ	3	7	عے	₹.	노	3	٨	4	R	ት	meter		
5.6	4.1	5.1	6	0.8	5.6	4.0	5.H	6.4	8.0	5.8	3.9	મુમ	6.8	8.0	mg/L	D,O.	50 (mg/L) > 3.7
S	ų	4	æ	4	ω	ۍ	عے	F	モ	3	Ч	٦	Ŧ	나	meter		
19.7	19.1	197	٥. هو	0.81	19.5	19,	19.5	ه.مل	081	92	(9,1	19.	رم. ه	(8.0	°C	TEMP.	TEMP (C) 20 ± 2
Ċv			_		[3]	_		_	_	Ź					meter		
32	32	ر د د	မ	R	33	32	ل ع ۶	48	32	33	32	لا لو	48	පිය	ppt	SALINITY	SALINITY (ppt) 31 ± 2
3	_		_	-	3		_			3		(-	meter		7
7.7	h.r	7.4	4.4	りた	7.7	7.3	4.5	8.4	りた	7.5	7.4	7.4	7.8	りた	unit	p∺	PH 7.8±0.5
11/11	0 }	1/9	-	>0 t ¹	1 / 11)/lo	1/0	18	501211	11/11	1/10	1/0	18	poltli		T a	,
a	a	вИ	MMC	4	Con	ur	1484	MMB	Y	GR	G-	BH	Mind	Ą		90	Tark
gr_	u u	Mrs Bun	MMG +	> wwe	Z	4 a	rough BH	A Smm	> ivue	CR	a a	MY SIM	MINIS of	> inue			EEEVING

Z	
Ш	
W	
Ţ	
)(
H	
· .	
(77)	
$\overline{}$	
m	
- 2	

Reference Toxicant Test Water Quality Datasheet

			LITY DATA	WATER QUALITY DATA		,
USEPA/USCOE 1998 / NEWFIELDS BIQ067	USEPA/USCOE 1998	1/7 TS	2000.05	3-9367 nL	FSW010609	Port Gamble Bath
PROTOCOL	PROT	INITIALAND DATE	QUANTITY OF DILUENT ACTUAL	QUANTITY OF STOCK ACTUAL	DILUTION WATER BATCH	NEWFIELDS LABORATORY
	11Jan09	111,	2000 mL	1.572 mL	Bill Gardiner	1105-005-860
TIME		TEST END DATE	QUANTITY OF DILUENT TARGET	QUANTITY OF STOCK TARGET	PROJECT MANAGER	NEWFIELDS JOB NUMBER
oet1	07Jan09	ر70 07 ا	Port Gamble / Bath	Mysidopsis bahia	Marina Park	City of Newport
TIME		TEST START DATE	PROTOCOL	SPECIES	PROJECT	CLIENT

		Ref.Toxcopper 1000					Ref.Toxcopper		:			Ref.Toxcopper				CLIENT/ NEWEIELDS ID	TEST CONDITIONS
******************************		1000 mg/L					500 mg/L					250 mg/L			value units	CONCENTRATION	S
4	ယ	2	<u>~</u>	0	4	ဒ	2	_	0	4	3	2	_	0		3	DAY
4	3	2	٦	All	4	3	2	_	All	4	3	2	_	All		į	0
Cu	h	ح	Ŧ	H	3	ے	عہ	チ	Ч	3	٦.	2۔	F	ᅩ	meter		
	5.2	6.1	ب ده	8.0	6.2	5.0	5,9	٠ ٠ ٥	9 S	6.4	4.3	5.6	6.9	<i>6.</i> £	mg/L	D.O.	00 (mg/L) > 3.7
W	h	کر	£.	6	3	4	کہ	F	ч	S	7	ع	F	4	meter		
	1.9.1	197	١.٥6	0.81	19.5	19.1	19,4	до.o	0.81	19.6	1.19	19.7	ا. مو	0.81	ဘိ	TEMP.	TEMP (C) 20 ± 2
w)		~		\Im	_		_	_	W	_			_	meter		&
	32	32	32	32	3 3	32	رد در	32	32	33	32	48	32	32	ppt	SALINITY	SALINITY (ppt) 31 ± 2
qu	-	_		_	3			^	_	3	-		_	_	meter		7
	7.5	7.6	7.9	8.E	7.7	7.5	7.6	7.9	らた	7.7	7.4	7.5	かった	かた	unit	рН	^{рн} 7.8 ± 0.5
11/1	91/1	1)9	1/8	ba)te(1)	1/11	1/10	j / A	128	bo)+(1	1/III	1/10	1/9	1/8	b01+11			Date
Sp.	R	ВH	MMB	X	CR_	ur	1311	MMB	4	Or-	a	BH	MMB	Q			Tach
7	M	MMB	MANG	X	a	R	Trans.	minus	X	CR_	a	Show	MMB	X		-	n n
	2	64	4	MMB		a	ダイ	4	Smm		a	MA	4	SIMIN		Ì	THE DING

ORGANISM RECEIPT LOG

Date:		Time:		NewFields Ba	atch No.
1/6/	09	1430		A135 15	146 Ab
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	dopsis bahia	î	Source:	lic BioS	ystens
Address:				Invoic	e Attached
	On File			Yes	No
Phone:	On F. Le		Contact:	H Kellman	
No. Ordered:	r-	No. Received:		Source Batch	
77		850		1/3/09	hsteh
Condition of Org			Approximate S	,	
	6000			day old	
Shipper:	FedEx		B of L (Tracking	•	
0				0732 154	6
Condition of Con	600	- (Received By:	BH	
Confirmation of I	D of Organism:	Yes No.)	Technician (Ir	nitials):
Notes:				ł	
pH (Units)	Temp. (°C)	D. (mg	U. (ductivity or Salinity lude Units)	Technician (Initials)
7.5	18.8	[S. '	1 2	74	BH
Notes:	* ,			<u></u>	

INNELARVAL DEVELOPMENTAL SUSPENDED PARTICULATE PHASE TEST WQ DATA SHEET

CLIENT	PROJECT
City of Newport	Marina Park
NEWFIELDS JOB NUMBER	PROJECT MANAGER
1105-005-860	Bill Gardiner

SPECIES		NEWFIELDS LABORATORY		PROTOCOL
Mytilus edulis (mussel)		Port Gamble incubator	ubator	USEPA/USACE 1998, Region 4 RIM 1993
TEST START DATE	TIME	TEST END DATE	E	
07Jan09	~ 8	09Jan09		
DILUTION WATER BATCH		TEMP Recorder (HOBO)#		S
FSW010609.01	.01	na a		

						WA	IER Q	WATER QUALITY DATA	ATA							
			2	DO (mg/L)	TEMPE	TEMPERATURE (°C)	Sal	Salinity (ppt)	P	pH (units)	Ą	Ammonia	ø	Suffices		
SHOBIIO	idona			≥4.0		16±1	3	31 ± 2	8	8.0 ± 1						
CI SENTI NEWEIEI DE ID	CONCENTRATION	٧٨	DISS	DISS. OXYGEN	ТЕМ	TEMPERATURE	S	SALINITY		Hq	A	AMMONIA	Sı	Suffides	Date	Tech
ODERA MEMPERS	value units	Ş	meter	mg/i∟	meter	ိင	meter	ppt	meter	unit	Techn.	mg/L	Techn.	mg/L		
		0	ナ	5.2	て	16.8		W	_	7.8					6 a/t=/1	7
			()	られ	W	4.5.	W	32	(V)	8.t						Ч
Control / .	0%	N	W	S, t	W	5.51	W	33	i	o't						カ
		ω										,				
		4														
		0	<u>−</u> κ	325	η	16.3		34°)	\$.¢					50/4/1	+
			W	ý	(N)	ē, O	W	35	w	≫ †7						オ
Site Water Control /	0%	N	W	s C	w	15.6	W	Ŋ	W	<i>و.</i> 1						d
		ω					1 1 1 1 1 1	1	 		; ; ; ;					
		4									-					

J 60/2/1 310

1	Z	Ш
j		ı
3	田	ı
4		Ш
	₹	il
		ı
į.	Ħ	ł
	TEL	ı
3		ł
	111	ı
3	-	I
1	D	ł
3	$\mathbf{\mathcal{I}}$	ı
Ť	Š	H
4		ľ
1		2
		-

►LARVAL DEVELOPMENTAL SUSPENDED PARTICULATE PHASE TEST WQ DATA SHEET

City of Newport Marina Park NEWFIELDS JOB NUMBER PROJECT MANAGER 1105-005-860 Bill Gardiner	CLIENT	PROVECT
PRO	City of Newport	Marina Park
	NEWFIELDS JOB NUMBER	PROJECT MANAGER
	1105-005-860	Bill Gardiner

SPECIES		NEWFIELDS LABORATORY		PROTOCOL
Mytilus edulis (mussel)		Port Gamble Incubator	bator	USEPA/USACE 1998, Region 4 RIM 1993
TEST START DATE	ñ	TEST END DATE	TIME	
07Jan09		09Jan09		
DILUTION WATER BATCH		TEMP Recorder (HOBO)#	*****	
FSW010609.01		na		

																LS.	3K963	772	Г
		Comp C-U /.					Comp C-U /.					Comp C-U / .			CLIENT/ NEWFIELDS ID		Test contions		
,		50 %					10 %					1 %			value units	CONCENTRATION	ntions		
4	ω	2	_	0	4	ω	N	->	0	4	ω	N		0	DAY	0.0000000000000000000000000000000000000			
1		(v)	∪ U	4			W	()s	4			N	W	4	meter	Dice		ğ	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6.8	r v	5.4			٦. ۲.	7.7	1.8			かった	J. L	8,3	wgr.	DISS OXYGEN	≥4.0	po (mg/L)	
1 1 1 1		W	w	ナ			W	()	۲			W	23	F	meter	TEM		HAMBL	
		9.50	4.5	16.5		1 1 1 1 1 1 1 1 1 1 1 1 1	1.51	15.9	16.6			15.6	1500	164	ငိ	TEMPERATION	16±1	TEMPERATURE (°C)	WA
 		Ŋ	() ₁				W	W	_			W	W	_	meter	8		2	TER Q
5 5 7 2 9 1 1		R	32	Final Property of the Property			33	32	32		1 1 1 1 1 1 1 1 1 1 1	လ	32	32	ppt	SAI INITY	31 ± 2	Salinky (ppt)	WATER QUALITY DATA
		W	Ŋ	_			W	W	_			W	U		meter	000000000000000000000000000000000000000	8	Đ	ΑΤΑ
1		8.0	かれ	2/5		1	0.8	6.1	7.9			80.0	4.9	7.9	unit	oH.	8.0 ± 1	pH (units)	
-				,		1 1 1 1 1									Techn.	Δ		4	
															"JrBw	AMMONIA		Ammonia	
			ŧ												Techn.	S		S	
															mg/L	Sulfides		Suffides	
		<u> </u>	8/!	1/7/09		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1/8	1/7/05			129	-8	1/2/08	Date				
		d	J	4		111111111111111111111111111111111111111	J	は	1			コ	A	4	Tech				

LARVAL DEVELOPMENTAL SUSPENDED PARTICULATE PHASE TEST WQ DATA SHEET

	CLIENT	PROJECT
	City of Newport	Marina Park
_	NEWFIELDS JOB NUMBER	PROJECT MANAGER
	1105-005-860	Bill Gardiner
_		

SPECIES		NEWFIELDS LABORATORY		PROTOCOL.
Mytilus edulis (mussel)		Port Gamble Incubator	ubator	USEPA/USACE 1998, Region 4 RIM 1993
TEST START DATE	TIME	TEST END DATE	TIME	
07Jan09		09Jan09		
DILUTION WATER BATCH		TEMP Recorder (HOBO)#		
ESW010609 03	<u>.</u>			

		Comp C-U / .			OLICIO ALPH ILLOO A	C: IENT! NEWEIEI DS (D	fortest	Test contions	
		100 %			value units	CONCENTRATION	Inons	rtione	
4	3	2	-	0		DAY			
			1 3	h	meter	SSIC	īV	8	
	111111111111111111111111111111111111111		<u>-</u>	6.6	mg/L	DISS. OXYGEN	≥4.0	DO (mg/L)	
		W	S	ナ	meter	TEMP	16	TEMPER	
		3 15,6	3 15.6 3	9.91 h	റ്	TEMPERATURE	16±1	TEMPERATURE (°C)	AVA
		W			meter	SA	3	Sali	בתא
	 		35	34	ppt	SALINITY	31 ± 2	Salinity (ppt)	WATER QUALITY DATA
	! ! !	W	(Ju	1	meter		8.1	PH	7
		3 8,0	ω ⊗.1	r 8.3	unit	PΗ	8.0 ± 1	pH (units)	
					Techn.	AM		Ām	
	; } } } }				mg/L	AMMONIA		Ammonia	
					Techn.	nS		Ş	
					mg/L	Suffides		Sulfides	
		1/9	_	1/7/09		Date			
	 	N	A	4		Tech			

ARVAL DEVELOPMENTAL SUSPENDED PARTICULATE PHASE TEST WQ DATA SHEET

CLIENT	PROJECT
City of Newport	Marina Park
NEWFIELDS JOB NUMBER	PROJECT MANAGER
1105-005-860	Bill Gardiner

		na)1	FSW010609.0
		TEMP Recorder (HOBO)#		DILUTION WATER BATCH
		09Jan09		07Jan09
	TIME	TEST END DATE	TIME	TEST START DATE
USEPA/USACE 1998, Region 4 RIM 1993	ubator	Port Gamble Incubator		Mytilus edulis (mussel)
PROTOCOL		NEWFIELDS LABORATORY		SPECIES

CLIENT/ NEWFIELDS ID CONG vali	ue ENTI			N Sign	00 (mg/L) 24.0 DISS. ΟΧΥΘΕΝ 17.9 7.2	TEMPER TEMPER	WAT TEMPERATURE (*0) 16±1 TEMPERATURE TEMPERATURE **C 16.5 16.9	FER QI	WATER QUALITY DATA (C) Summy (pps) 31±2	ATA 8. P.	8.0±1 8.0±1 9.1 8.0	Am Techn.	Ammonia AMMONIA mg/L	Su Techn.	Suffdes Suffdes mg/L	Date 1/7/05	7 7 8 13
Comp C-L / .	1%	N		(3)	6.9	W	9.6	W	33	ω) (જ.						
		ω															
		4															
		0	上		8.0	エ	16-6		32	_	79					1/7/09	
				W	C, L,	i	2.6	ß	33	3	8.0					1/8	
Comp C-L/.	10 %	2		W	ナル	W	5.5	W	33	W	8.0					19	7
		ω	-														
		4															1
		0		ナ	90	-۲	16.6	_	33	_	7.9					1/7/09	
			ω ω	3	رن لب	W	S.51	W	Ω Ø	W	0 %		-			8 7	J
Comp C-L / .	50 %	N		M	ガ	W	アング	W	36	W	8.0					<u>-</u>	H
		ω	-		1 1 1 1 1 1 1 1 1				1		111111111111111111111111111111111111111						
		4															

N LARVAL DEVELOPMENTAL SUSPENDED PARTICULATE PHASE TEST WQ DATA SHEET

CLIENT	PROJECT
City of Newport	Marina Park
NEWFIELDS JOB NUMBER	PROJECT MANAGER
1105-005-860	Bill Gardiner

SPECIES	NEWFIELDS LABORATORY		PROTOCOL
Mytilus edulis (mussel)	Port Gamble Incubator	ubator	USEFA/USACE 1998, Region 4 RIM 1993
TEST START DATE TIME	TEST END DATE	TIME	***************************************
07Jan09	09Jan09		
DILUTION WATER BATCH	TEMP Recorder (HOBO)#		
FSW010609.01	<u>ت</u>		

		Comp C-L / .				CI SENT/ NEWEIEI DS ID	enominates	Test con		
		100 %			value units	CONCENTRATION	uous	lions		
4	ω		_	0		DAY	ne.			
		Ŋ	W	4	meter	DISS.	īV	9 0		
			h.t	0.8	mg/L	DISS. OXYGEN	≥4.0	DO (mg/L)		
		W	W	4	meter	HWELL	ા	TEMPE		
		3 155	15.9	16.9	റ്	TEMPERATURE	16±1	TEMPERATURE (°C)	WA	
		W	M		meter	/S	3	Salinky (ppl)	TER Q	
			35	38	ppt	SALINITY	31 ± 2	nity (ppt)	WATER QUALITY DATA	
		W	W		meter		8.	P.	ATA	
		3 R.O	ە. 17	7.8	unit	PH	8.0 ± 1	pH (units)		
					Techn.	WW		Am		
					mg/l.	AMMONIA		Ammonia		
					Techn.	Suffides		Suffides		
					mg/L	des		des		
		1/9	8/1	1/7/09		Date				
		d	J	7/09 4		Tech			CONTRACTOR OF THE CONTRACTOR O	

Anamar Eohs

		-Hoama	cr -	-ons			Page	of	
Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N	pH	Sal (ppt)	Sulf. mg/L
NECFOR-Ref		1/5/09 4			1/5/09 4	M	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
NECF18/									
NECFO8-2		4			1	V	,		
MARIN	AP	ARK	Init	ial	NAZ				
C.L1		117/09 MMB	40.5						
10			40.5						
50			40.5						
1 100		V	40.5						
C. W 1		1/7/09 MMB	۷٥.5						
10			40.5						
50			(0.5						
1 100		4	40.5						
	_,, ,								:
	*****		Fin	al 1	1H 3				
Ø		1/9/09 MME	40.5						
C.L1			40.5						
10			40.5						
50			40.5						
(00			20.5						
C.W 1			20.5						
(0			۷٥.5					-	
50			(0.5						
100			0.506						
		T							

BIVALVE LARVAL DEVELOPMENTAL SUSPENDED FARTICULATE PHASE

NEWFIELDS] ENDP	OINT DAT	A SHEET		
NEWFIELDS			species Mytilus edulis (mus	sel)	
CLIENT	PROJECT	NEWFIELDS JOB NUM	, , , , , , , , , , , , , , , , , , , ,		PROTOCOL
City of Newport		1105-005-860			HEEDARISACE

		LARVA	LOBS	ERVATIO	N DATA			1000, (togion
CLIENT/ NEWFIELDS ID	CONCENTRATION value units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
			1	297		1/20/09	cr	****************
			2	270				
ZERO-TIME (PRE)	0 %		3	266 308				
			4	308				
			5	302		V	V	•••••
			1	269	5	114/09	CR	
:			2	271	12	1		********************
Control / .	0 %		3	271	14			•••••••
			4	270	7			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			5	281	7			
			1	253	7			
			2	284	4			
Site Water Control /	0 %		3	275	5			****
			4	294	4			
			5	246	6			

BIVALVE LARVAL DEVELOPMENTAL SUSPENDED PARTICULATE PHASE

ENDPOINT DATA SHEET

SPECIES

Mytilus edulis (mussel)

CLIENT

City of Newport

PROJECT

Marina Park

NEWFIELDS JOB NUNPROJECT MANAGER

1105-005-860

Bill Gardiner

Port Gamble Incubator

1998, Region 4

City of New	port Mari	na Park			Bill Gardine	r Port	Gamble Incuba	tor 1998, Region 4
		LARVA	L OBS	ERVATIO				
CLIENT/ NEWFIELDS ID	CONCENTRATION value units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
			1	290	10	1/19/09	CR	
			2	258	12			
Comp C -⊍ / .	1 %		3	317	10			
			4	300				
			5	262	8			
			1	260	a			
		***************************************	2	283	4			
Comp C-U / .	10 %		3	293	8			
			4	311	7			
			5	265	8	V	V	
			1	263	12	1/20/09	u	
			2	241	8			
Comp C-U / .	50 %	.,	3	276	8			
			4	302	6			
			5	281	8			
			1	298	8			
			2	296	7			
Comp C-U / .	100 %		3	313	17			
			4	284	5			
			5	300	6			

BIVALVE LARVAL DEVELOPMENTAL SUSPENDED FARTICULATE PHASE

T.	NEWFIELDS	ENI	DPOINT DAT	A SHEET		
_	NEWFIELD	5		SPECIES		***************************************
				Mytilus edulis (ri	nussel)	
CLIEN	Т	PROJECT	NEWFIELDS JOB NUN	PROJECT MANAGER	NEWFIELDS LABORATORY	PROTOCOL
	City of Newport	Marina Park	1105-005-860	Bill Gardiner	Port Gamble Incubator	USEPA/USACE 1998, Region 4
		LAR	VAL OBSERVA	ION DATA		

		LARVA	r OR	ERVATIO				
CLIENT/ NEWFIELDS ID	CONCENTRATION value units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
			1	283	5	1/20/09	CR	
			2	276	5			
Comp C-L / .	1 %		3	291	7			
			4	233	7			
			5	279	5			
			1	255	7			
			2	281	8			
Comp C-L / .	10 %	***************************************	3	324	9			
			4	261	4			
			5	264	11			
	:		1	253	4			*************************
			2	262	11			
Comp C-L / .	50 %		3	296	9			***************************************
			4	277	7			***************************************
			5	290	8			
		*************************************	1	247	7			
			2	3040	0Z ⁵			
Comp C-L / .	100 %		3	293	8			
			4	299	9			
			5	306	5		V	

Report Date:

26 Jan-09 1:05 PM

Mussel She	eli Developme	ent Test										NewFields
Test Type: Protocol:	Development EPA/600/R-9					pecies (Mus d Proportion			aterial: ource:	Copper Refere	sulfate nce Toxica	nt-REF
EC50	15-									•		
	31 Jan-06	31 Jan-06-	14 Mar-06-	14 Mar-06-	10 3an-07	05 Jun-07–	26 Jun-07-	02 Jul-07-	14 Nov-07-	22 Feb-08-	22 Oct-08-	07 Jan-09
	Mean: Sigma		Count: CV:	12 49.65%		-1s Warn +1s Warn	ing Limit: ing Limit:	5.38297 12.0550			.imit: 3.59 .imit: 18.0	

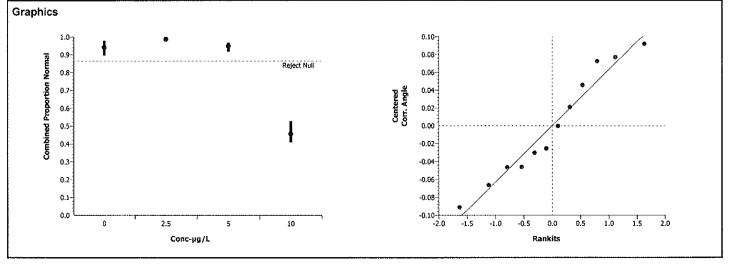
Qualit	y Contr	rol Data								
Point	Year	Month	Day	Data	Delta	Sigma	Warning	Action	Test Link	Analysis
1	2006	Jan	31	6.61806	-1.43748	-0.48759			13-7720-1086	09-0953-9971
2			31	7.27814	-0.77740	-0.25175			07-7532-7374	03-9619-0590
3		Feb	21	15.39971	7.34417	1.60743	(+)		13-4991-4803	05-4083-6897
4		Mar	14	7.14387	-0.91168	-0.29794			06-2606-4386	01-1874-9985
5			14	14.18912	6.13358	1.40433	(+)		04-5028-3346	02-3972-6078
6	2007	Jan	10	4.98039	-3.07516	-1.19283	(-)		14-3905-0090	14-8759-6838
7		Jun	5	7.58039	-0.47515	-0.15081			13-7829-5492	02-0555-4940
8			26	8.51244	0.45690	0.13685			01-3435-1614	10-7297-9254
9		انال	2	11.50108	3.44554	0.88331			05-4911-0140	15-1586-2946
10		Nov	14	3.68371	-4.37184	-1.94096	(-)		15-3555-7493	15-2027-0867
11	2008	Feb	22	8.50255	0.44700	0.13397			06-6162-8975	04-4740-6893
12		Oct	22	8.57836	0.52281	0.15599			13-5164-0440	13-1167-6043
13	2009	Jan	7	9.69234	1.63680	0.45886			10-8012-7714	12-5942-1542

CETIS Analysis Detail

Comparisons:

Page 1 of 1

Report Date: Analysis:


26 Jan-09 1:04 PM 06-3783-7788

Mussel Shell Deve	lopment Test									NewFields
Endpoint		Analysis T	ype	<u> </u>	Sample Lir	ık	Control Link	Date Analyzed	Versi	on
Combined Proportio	n Normal	Comparisor	n		10-8012-77	14	10-8012-7714	26 Jan-09 1:04	PM CETI	Sv1.1.2
Method		Alt H	Data Tra	nsform	Zeta	NO	L LOEL	Toxic Units	ChV	PMSD
Dunnett's Multiple C	omparison	C>T /	Angular ((Corrected)		5	10	20	7.07107	8.11%
Group Comparisor	1S									
Control vs	Conc-µg/L	Statis	stic	Critical	P-Value	t	MSD	Decision(0.05)		
Dilution Water	2.5	-2.26	04	2.41651	0.9970	(0.14073	Non-Significant E	ffect	
	5	-0.18	88	2.41651	0.8114	(0.14073	Non-Significant E	ffect	
	10	10.19	128	2.41651	0.0000	().14073	Significant Effect		
Test Acceptability										
Attribute		Statistic	TAC	Range	Overlap	í	Decision			
PMSD		0.08106	NL -	0.25	No	F	asses accepta	bility criteria		
ANOVA Table										<u> </u>
Source	Sum of Squar	res Mear	n Square	DF	F Statistic	F	P-Value	Decision(0.05)		
Between	0.9569461	0.318	982	3	62.70	(0.00001	Significant Effect		
Error	0.0407007	0.005	0876	8						
Total	0.99764680	0.324	10696	11	=					

ANOVA ASSUM	ptions					
Attribute	Test	Statistic	Critical	P-Value	Decision(0.01)	
Variances	Bartlett	0.40782	11.34487	0.93862	Equal Variances	
Distribution	Shapiro-Wilk W	0.94237		0.52940	Normal Distribution	

Data Summa	ery			Origi	nal Data		Transformed Data				
Conc-µg/L	Control Type	Count	Mean	Minimum	Maximum	SD	Mean	Minimum	Maximum	SD	
0	Dilution Water	3	0.93950	0.89547	0.97879	0.04186	1.33288	1.24157	1.42463	0.09153	
2.5		3	0.98611	0.97690	1.00000	0.01224	1.46452	1.41821	1.54128	0.06694	
5		3	0.94733	0.91638	0.96743	0.02720	1.34387	1.27743	1.38932	0.05883	
10		3	0.45412	0.40767	0.52613	0.06323	0.73927	0.69253	0.81154	0.06348	

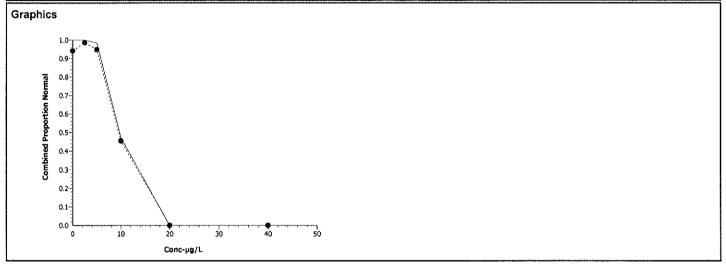
Data Detail											
Conc-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Dilution Water	0.89547	0.97879	0.94425							
2.5		1.00000	0.98142	0.97690							
5		0.96743	0.95819	0.91638							
10		0.42857	0.407 6 7	0.52613							

Spearman-Karber:

Page 1 of 1

Report Date:

26 Jan-09 1:04 PM


Analysis:

12-5942-1542

Mussel Shell Devel	opment Test						NewField	
Endpoint	Ana	ılysis Type		Sample Link	Control Link	Date Analyzed	Version	
Combined Proportion	n Normal Trin	nmed Spearma	an-Karber	10-8012-7714	10-8012-7714	26 Jan-09 1:04 PM	CETISv1.1.2	
Spearman-Karber 0	Options				Point Esti	Point Estimates		
Threshold Option	Lower Threshol	d Trim	Mu	Sigma	EC50/LC5	0 95% LCL	95% UCL	
Control Threshold	0.05862832	0.00%	0.9864288	0.00528037	71 9.69234	9.45950	9.93092	
							······································	

CETIS Analysis Detail

Data Summ	ary			Calcu	lated Variate	(A/B)				
Conc-µg/L	Control Type	Count	Mean	Minimum	Maximum	SE	SD	Α	В	
0	Dilution Water	3	0.93950	0.89547	0.97879	0.00854	0.04186	851	904	
2.5		3	0.98611	0.97690	1.00000	0.00250	0.01224	900	913	
5		3	0.94733	0.91638	0.96743	0.00555	0.02720	835	881	
10		3	0.45412	0.40767	0.52613	0.01291	0.06323	391	861	
20		3	0.00000	0.00000	0.00000	0.00000	0.00000	0	861	
40		3	0.00000	0.00000	0.00000	0.00000	0.00000	0	861	

Page 1 of 1

CETIS Data Worksheet

Report Date: Link:

26 Jan-09 1:05 PM

10-8012-7714

								<u></u>	IK,	10-0012-7714
Mussel Shell	Deve	lopme	ent Te	st						NewFields
Start Date: Ending Date: Sample Date:	09 J	lan-09	06:00 06:00 06:00	PM Proto	col: EPA/600/	/R-95/136 (199	5)	Sample Code: Sample Source: Sample Station:	1512131168 Reference Toxicant P070930.96	
Conc-µg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes	
0	D	1	15	287	264	264	257			
0	D	2	9	287	330	330	323			
0	D	3	2	287	275	275	271			
2.5		1	4	287	292	292	287			
2.5		2	13	287	323	323	317			
2.5		3	7	287	303	303	296			
5		1	16	287	307	307	297			
5		2	18	287	284	284	275			
5		3	12	287	273	273	263			
10		1	10	287	278	278	123			
10		2	6	287	311	311	117			
10		3	11	287	285	285	151			
20		1	14	287	298	298	0			
20		2	17	287	255	255	0			
20		3	8	287	295	295	0			
40		1	1	287	25	25	0		,	
40		2	5	287	31	31	0		,	
40		3	3	287	27	27	0			

EARVAL DEVELOPMENTAL SUSPENDED PARTICULATE PHASE TEST COPPER REFERENCE TOXICANT WQ

CLIENT	PROJECT	SPECIES	NEWFIELDS LABORATORY	JRY	PROTOCOL	
City of Newport	Marina Park	Mytilus edulis (mussel)	Incubator	pator	USEPA/USACE 1998, Region 4 RIM 1993	
NEWFIELDS JOB NUMBER	PROJECT MANAGER	QUANTITY OF STOCK TARGET: 0.039 mL QUANTITY OF DILUENT: 500mL	QUANTITY OF DILUENT:	500mL	LIN	
1105-005-860	Port Gamble	ACTUAL: 0.03124 ML	ACTUAL:		DATE PREP	
Test ID	LOT #:	TEST START DATE:	TIME	TEST END DATE	TIME	
1070930.96	1704237	07Jan09	0081	09Jan09	1800	

WATER QUALITY DATA

DILTIN.WAT.BATCH		TEMP REC#	ÆC#			REF	REFERENCE TOX. MATERIAL			REFE	REFERENCE TOXXICANT	 - -
FSW010609.01	71			na		<u> </u>	Copper Sulfate	ate			copper	
TEST	TEST CONDITIONS				DO (mg/L)		TEMP(G)		SAL (ppt)		þH	MVISIMESTA
3					24.0		16 ± 1 %		31±18		80+1	
G G LILL	CONCENTRATION	L,	G C		D.O.		TEMP.		SALINITY		рН	
CLIENI/ NEWFIELDS ID	value units	IN	KEr	metar	mg/L	meter	ر °C	meter	ppt	meter	unit	WQ IECH
		0	Stock	አ	7.8	۲	16.3	1	33	-	1.t	НS
		-	Stock	60	7.2	3	16.7	\sim	91	B	7.E	<u> </u>
Ref. ToxCopper	0 mg/L	7	Stock	K	7.5	3	10.4	3	31	2	7.5	7
		3	Stock									
		4	Stock									
		0	Stock	7	8.0	Σ	1.91	1	3	ĺ	£.£	₽¥.
		-	Stock	W	구.	8	0.01	8	32	3	7.F	7
Ref. ToxCopper	2.5 mg/L	7	Stock	3	1,4	ω	4.91	0	32	3	ナナ	<u>S</u>
		က	Stock									
		4	Stock									
		0	Stock	5	0.8	7	1.91	ر	33		±£	AGJ
		-	Stock	W	١٠٢	3	16.6	60	32	Μ)	4.4	A
Ref. Tox Copper	5 mg/L	7	Stock	W	±	3	16.4	3	32	W	7.8	M
		က	Stock								,	
	Ĩ	4	Stock									

Page 2168.201.29\d drive\Projects\Marina Park\Bioassay\Larval SPP test

FECTARVAL DEVELOPMENTAL SUSPENDED PARTICULATE PHASE TEST COPPER REFERENCE TOXICANT WQ

CLIENT	PROJECT	SPECIES	NEWFIELDS LABORATORY	ORY	PROTOCOL.
City of Newport	Marina Park	Mytilus edulis (mussel)	Incr	Incubator	USEPAUSACE 1998, Region 4 RIM 1993
NEWFIELDS JOB NUMBER	PROJECT MANAGER	QUANTITY OF STOCK TARGET: 0.039 mL QUANTITY OF DILUENT: 500mL	QUANTITY OF DILUEN	T: 500mL	LINI
1105-005-860	Port Gamble	ACTUAL:	ACTUAL:		DATE PREP
Test ID	LOT #:	TEST START DATE:		TEST END DATE	TIME
		07Jan09		09Jan09	

WATER QUALITY DATA

DILTIN.WAT.BATCH		TEMP REC#	EC#			REFE	REFERENCE TOX. MATERIAL			REFE	REFERENCE TOXXICANT	<u> </u>
FSW010609.01	11			na			Copper Sulfate	ate			copper	
STATE STATE	SMODEWOOD				DØ (mg/L)		TEMP(G)		SAL (opt)		pti	A Control of the Control
Ğ					0.75		Section 1988 Commence		34.11		8.0 ± 1	
	CONCENTRATION	Ь.	i		D.O.		TEMP.		SALINITY		Нd	
CLIEN!/ NEWFIELDS ID	value units	ŊĄĶ	KEP	meter	mg/L	meter	၁့	meter	ppt	meter	unit	WQ IECH
		0	Stock	h	0.8	7	16.	_	32	1	7.8	BH
		~	Stock	ω	ا .۴	ω	16.6	M	32	3	ナナ	A
Ref. ToxCopper	10 mg/L	2	Stock	3	7.1	ω	h- <i>ባ</i>]	W)	32	3	7.8	F
		ဗ	Stock									
		4	Stock									
		0	Stock	h	8.0	h	0.91		3 A		2.8	BIY
		~-	Stock	3	٦.١	8	16.6	3	32	8	7.8	A
Ref. ToxCopper	20 mg/L	7	Stock	\otimes	7.1	W	٢. ما	3	32	3	7.9	12
		က	Stock									
		4	Stock									
		0	Stock M	≶	8.0	5	15.9		32		7.8	BH
		-	Stock 3	3	7.1	α	16.5	ω	32	3	7.8	K
Ref. ToxCopper	40 mg/L	7	Stock	\mathcal{S}	7-0	W	t·7)	ω	32	W	4.9	K
		က	Stock									
		4	Stock									

Page2168.201.29\d drive\Projects\Marina Park\Bioassay\Larval SPP test

LARVAL DEVELOPMENTAL SUSPENDED PARTICULATE PHASE TEST COPPER REFERENCE TOXICANT ENDPOINT DATA SHEET

NEWFIELDS

P070930.96

			Mytilus edulis	(mussel)	
CLIENT	PROJECT	NEWFIELDS JOB NUM	PROJECT MANAGER	NEWFIELDS LABORATORY	PROTOCOL
City of Newport	Marina Park	1105-005-860	Bill Gardiner	Port Gamble Incubator	USEPA/USACE 1998, Region
	100 V = 100 V	1800 - Y - Y - Y - 1 - 1 T F F	ALCOHOLD BY THE STREET		

			LAKVA	r ors	ERVATIO				
CLIENT/ MEC ID	CONCENT. value	RATION units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
			,	1	257	7	1/19/09	(L	
Ref.ToxCopper	C	μg/L	***************************************	2	323	7	1		***************************************
			***************************************	3	271	4			*************************
				1	287	5			
Ref.ToxCopper	2.5	μ g/L		2	317	6			
				3	296	7			
			***************************************	1	297	10			******************
Ref.ToxCopper	5	μg/L	**************************	2	275	9			>*************************************
***				3	263	10			
			*************************	1	123	155			*************************
Ref.ToxCopper	10	μg/L	***************************************	2	117	194			********************
				3	151	134			
			***************************************	1	0	298			
Ref.ToxCopper	20	μg/L	····	2	O	255			***************************************
				3	0	295			
			***************************************	1	0	25	444		****************
Ref.ToxCopper	4 C	μg/L		2	0	31			
	····			3	0	27	V	V	
	Stock	ina		1		295	1/20/09	R	**4********
Ref.ToxCopper	Dens:		*****************************	2	X	289	,		***************************************
				3	$I/$ \setminus	277	V/		

ORGANISM RECEIPT LOG

Date:		Time:		NewFields E	Batch No.
1/6/08	<u> </u>	1430)	CA 318	21
	ytilus sp		Source:	ed Aque	farms
Address:	n F.le			Invoi	ce Attached
Phone:)n F.le		Contact:	n Davis	
No. Ordered:	, -	No. Received:	ch	Source Batc	
Condition of Orga	anisms:		Approximate Si	ze or Age:	
Shipper: Fe o			B of L (Tracking 7962	1 No.) 2961 312	1
Condition of Con	Good		Received By:	BH	
Confirmation of II	O of Organism:	Yes No)	Technician (Initials):
Notes:					
pH (Units)	Temp. (°C)	D.6 (mg	<i>(</i> 1) S	luctivity or Salinity ude Units)	Technician (Initials)
+				<u> </u>	13H
Notes: X sli	pped d	7			
		/			

Appendix E Bioaccumulation Tests Data Sheets and Supporting Information

Data Release Authorized:

Reported: 01/22/09
Date Received: 01/16/09
Page 1 of 2

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	RL	Result
Mn ZERO TIME OI73A 09-1988	12/16/08	Tissue	01/20/09	0.0010	0.480 %
Mn ZERO TIME REP.2 OI73B 09-1989	12/16/08	Tissue	01/20/09	0.0010	0.449 %
Mn ZERO TIME REP.3 OI73C 09-1990	12/16/08	Tissue	01/20/09	0.0010	0.450 %
NC BACKGROUND 0173D 09-1991	12/19/08	Tissue	01/20/09	0.0010	0.819 %
Mn LA-3 REF. REP.1 OI73E 09-1992	01/14/09	Tissue	01/20/09	0.0010	0.369 %
Mn LA-3 REF. REP.2 OI73F 09-1993	01/14/09	Tissue	01/20/09	0.0010	0.398 %
Mn LA-3 REF. REP.3 OI73G 09-1994	01/14/09	Tissue	01/20/09	0.0010	0.339 %
Mn LA-3 REF. REP.4 OI73H 09-1995	01/14/09	Tissue	01/20/09	0.0010	0.339 %
Mn LA-3 REF. REP.5 OI73I 09-1996	01/14/09	Tissue	01/20/09	0.0010	0.369 %
Mn COMP.C.L REP.1 OI73J 09-1997	01/14/09	Tissue	01/20/09	0.0010	0.400 %
Mn COMP.C.L REP.2 OI73K 09-1998	01/14/09	Tissue	01/20/09	0.0010	0.350 %
Mn COMP.C.L REP.3 OI73L 09-1999	01/14/09	Tissue	01/20/09	0.0010	0.380 %
Mn COMP.C.L REP.4 OI73M 09-2000	01/14/09	Tissue	01/20/09	0.0010	0.429 %
Mn COMP.C.L REP.5 OI73N 09-2001	01/14/09	Tissue	01/20/09	0.0010	0.459 %
Mn COMP.C.U REP.1 OI73O 09-2002	01/14/09	Tissue	01/20/09	0.0010	0.320 %

Data Release Authorized:

Reported: 01/22/09

Date Received: 01/16/09

Page 2 of 2

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	RL	Result
Mn COMP.C.U REP.2 OI73P 09-2003	01/14/09	Tissue	01/20/09	0.0010	0.328 %
Mn COMP.C.U REP.3 OI73Q 09-2004	01/14/09	Tissue	01/20/09	0.0010	0.390 %
Mn COMP.C.U REP.4 OI73R 09-2005	01/14/09	Tissue	01/20/09	0.0010	0.410 %
Mn COMP.C.U REP.5 OI73S 09-2006	01/14/09	Tissue	01/20/09	0.0010	0.408 %
NC LA-3 REF. REP.1 OI73T 09-2007	01/14/09	Tissue	01/20/09	0.0010	0.759 %
Method Blank			01/20/09	0.0010	< 0.0010 % U
Mn LA-3 REF. REP.4 DUP OI73HDUP 09-1995	01/14/09	Tissue	01/20/09	0.0010	0.279 % RPD: 19.4 %

Results Are On A Wet Weight Basis

RL-Analytical reporting limit U-Undetected at reported detection limit

Data Release Authorized: Reported: 01/22/09 / Date Received: 01/16/09

Page 1 of 2

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	RL	Result
NC LA.3 DEF REP.2 OI77A 09-2015	01/14/09	Tissue	01/20/09	0.0020	0.876 %
NC LA.3 DEF REP.3 OI77B 09-2016	01/14/09	Tissue	01/20/09	0.0020	0.873 %
NC LA.3 DEF REP.4 OI77C 09-2017	01/14/09	Tissue	01/20/09	0.0020	0.911 %
NC LA.3 DEF REP.5 OI77D 09-2018	01/14/09	Tissue	01/20/09	0.0020	0.857 %
NC COMP.C.L REP.1 OI77E 09-2019	01/14/09	Tissue	01/20/09	0.0020	0.812 %
NC COMP.C.L REP.2 OI77F 09-2020	01/14/09	Tissue	01/20/09	0.0020	0.893 %
NC COMP.C.L REP.3 OI77G 09-2021	01/14/09	Tissue	01/20/09	0.0020	0.940 %
NC COMP.C.L REP.4 OI77H 09-2022	01/14/09	Tissue	01/20/09	0.0020	0.898 %
NC COMP.C.L REP.5 OI77I 09-2023	01/14/09	Tissue	01/20/09	0.0020	0.871 %
NC COMP.C.U REP.1 OI77J 09-2024	01/14/09	Tissue	01/20/09	0.0020	0.972 %
NC COMP.C.U REP.2 0177K 09-2025	01/14/09	Tissue	01/20/09	0.0020	0.812 %
NC COMP.C.U REP.3 0177L 09-2026	01/14/09	Tissue	01/20/09	0.0020	0.900 %
NC COMP.C.U REP.4 OI77M 09-2027	01/14/09	Tissue	01/20/09	0.0020	0.838 %

Data Release Authorized: As Reported: 01/22/09

Date Received: 01/16/09

Page 2 of 2

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	RL	Result
NC COMP.C.U REP.5 OI77N 09-2028	01/14/09	Tissue	01/20/09	0.0020	1.08 ક
Method Blank			01/20/09	0.0020	< 0.0020 % U
NC COMP.C.L REP.4 DUP OI77HDUP 09-2022	01/14/09	Tissue	01/20/09	0.0020	0.931 % RPD: 3.6 %

Results Are On A Wet Weight Basis

RL-Analytical reporting limit U-Undetected at reported detection limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: OI73A

LIMS ID: 09-1988 Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

Sample ID: Mn ZERO TIME

SAMPLE

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 12/16/08 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-rec Q
CLP-M	01/20/09	7 4 71A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: Mn ZERO TIME REP.2

SAMPLE

Lab Sample ID: OI73B LIMS ID: 09-1989

Matrix: Tissue

Data Release Authorized;

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 12/16/08 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-rec Q
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: Mn ZERO TIME REP.3

SAMPLE

Lab Sample ID: 0173C

LIMS ID: 09-1990 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 12/16/08 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-rec	⇒ Q
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.009	U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OI73D

LIMS ID: 09-1991

Matrix: Tissue Data Release Authorized

Reported: 01/23/09

Sample ID: NC BACKGROUND

SAMPLE

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 12/19/08 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.010

TOTAL METALS

Page l of l

Sample ID: Mn LA-3 REF. REP.1

SAMPLE

Lab Sample ID: 0173E LIMS ID: 09-1992

Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: Mn LA-3 REF. REP.2

SAMPLE

Lab Sample ID: OI73F

LIMS ID: 09-1993 Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.009 U

TOTAL METALS

Page 1 of 1

Sample ID: Mn LA-3 REF, REP.3

SAMPLE

Lab Sample ID: 0173G

LIMS ID: 09-1994 Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-rec Q
CLP-M	01/20/09	747 1 A	01/22/09	7439-97-6	Mercury	0.009	0.009 U

TOTAL METALS

Page 1 of 1

Sample ID: Mn LA-3 REF. REP.4

SAMPLE

Lab Sample ID: 0173H LIMS ID: 09-1995

Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-re	c Q
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01	U

TOTAL METALS

Page 1 of 1

Sample ID: Mn LA-3 REF. REP.5

SAMPLE

Lab Sample ID: OI73I LIMS ID: 09-1996

LIMS ID: 09-1996 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: Mn COMP.C.L REP.1

SAMPLE

Lab Sample ID: OI73J LIMS ID: 09-1997

LIMS ID: 09-1997 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.009 υ

TOTAL METALS
Page 1 of 1

Sample ID: Mn COMP.C.L REP.2

SAMPLE

Lab Sample ID: OI73K

LIMS ID: 09-1998 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	747 1 A	01/22/09	7439-97-6	Mercury	0.009	0.009 U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OI73L

LIMS ID: 09-1999

Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

Sample ID: Mn COMP.C.L REP.3

SAMPLE

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: Mn COMP.C.L REP.4

SAMPLE

Lab Sample ID: OI73M

LIMS ID: 09-2000 Matrix: Tissue

Data Release Authorized (

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.009 ບ

TOTAL METALS

Page 1 of 1

Sample ID: Mn COMP.C.L REP.5

SAMPLE

Lab Sample ID: OI73N LIMS ID: 09-2001

Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A		7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: Mn COMP.C.U REP.1

SAMPLE

Lab Sample ID: 01730 LIMS ID: 09-2002

Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.011

TOTAL METALS
Page 1 of 1

Lab Sample ID: 01730

LIMS ID: 09-2002 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

Sample ID: Mn COMP.C.U REP.1

DUPLICATE

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q	
Mercury	7471A	0.011	0.011	0.0%	+/- 0.009	L	

Reported in mg/kg-as-rec

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS
Page 1 of 1

Sample ID: Mn COMP.C.U REP.1

MATRIX SPIKE

Lab Sample ID: 01730 LIMS ID: 09-2002

Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Mercury	7471A	0.011	0.100	0.0931	95.6%	

Reported in mg/kg-as-rec

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS

Page 1 of 1

Sample ID: Mn COMP.C.U REP.2

SAMPLE

Lab Sample ID: OI73P

LIMS ID: 09-2003

Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09
Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.013

TOTAL METALS

Page 1 of 1

Sample ID: Mn COMP.C.U REP.3

SAMPLE

Lab Sample ID: 0173Q LIMS ID: 09-2004

Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.011

TOTAL METALS
Page 1 of 1

Sample ID: Mn COMP.C.U REP.4

SAMPLE

Lab Sample ID: OI73R

LIMS ID: 09-2005 Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.011

TOTAL METALS

Page 1 of 1

Sample ID: Mn COMP.C.U REP.5 SAMPLE

Lab Sample ID: OI73S

LIMS ID: 09-2006

Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01

TOTAL METALS

Page 1 of 1

Lab Sample ID: OI73T

LIMS ID: 09-2007

Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

Sample ID: NC LA-3 REF. REP.1

SAMPLE

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL.	mg/kg-as-rec	Q
CLP-M	01/20/09	7 4 71A	01/22/09	7439-97-6	Mercury	0.01	0.01	Ų

TOTAL METALS
Page 1 of 1

Sample ID: LAB CONTROL

Lab Sample ID: 0173LCS

LIMS ID: 09-1988 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Mercury	7471A	0.21	0.20	105%	

Reported in mg/kg-wet

N-Control limit not met NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Sample ID: METHOD BLANK

Lab Sample ID: OI73MB

LIMS ID: 09-1988

Matrix: Tissue

Data Release Authorized Reported: 01/23/09

Percent Total Solids: NA

QC Report No: OI73-Newfields Northwest

Project: Marina Park

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-re	ec Q
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01	U

TOTAL METALS

Page 1 of 1

Sample ID: NC LA.3 DEF REP.2

SAMPLE

Lab Sample ID: OI77A

LIMS ID: 09-2015 Matrix: Tissue

Data Release Authorized: Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: NC LA.3 DEF REP.2

DUPLICATE

Lab Sample ID: 0177A

LIMS ID: 09-2015 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Duplicate	RPD	Control Limit	Q	
Mercury	7471A	0.01 U	0.01 U	0.0%	+/- 0.01	L	

Reported in mg/kg-as-rec

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

TOTAL METALS
Page 1 of 1

Sample ID: NC LA.3 DEF REP.2

MATRIX SPIKE

Lab Sample ID: OI77A

LIMS ID: 09-2015 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

MATRIX SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Sample	Spike	Spike Added	% Recovery	Q
Mercury	7471A	0.010 U	0.101	0.0950	106%	

Reported in mg/kg-as-rec

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

TOTAL METALS

Page 1 of 1

Sample ID: NC LA.3 DEF REP.3

SAMPLE

Lab Sample ID: OI77B LIMS ID: 09-2016

LIMS ID: 09-2016 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: NC LA.3 DEF REP.4

SAMPLE

Lab Sample ID: 0177C

LIMS ID: 09-2017 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL,	mg/kg-as-re	ec Q
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01	U

TOTAL METALS

Page 1 of 1

Sample ID: NC LA.3 DEF REP.5

SAMPLE

Lab Sample ID: OI77D

LIMS ID: 09-2018

Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-re	∍c Q
CLP-M	01/20/09	747 1 A	01/22/09	7439-97-6	Mercury	0.009	0.009	U

TOTAL METALS

Page 1 of 1

Sample ID: NC COMP.C.L REP.1

SAMPLE

Lab Sample ID: 0177E LIMS ID: 09-2019

LIMS ID: 09-2019 Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	747 1 A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: NC COMP.C.L REP.2

SAMPLE

Lab Sample ID: 0177F

LIMS ID: 09-2020

Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-re	ec Q
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.009	U

TOTAL METALS
Page 1 of 1

Sample ID: NC COMP.C.L REP.3

SAMPLE

Lab Sample ID: 0177G

LIMS ID: 09-2021 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-rec Q
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.009 U

TOTAL METALS

Page 1 of 1

Sample ID: NC COMP.C.L REP.4

SAMPLE

Lab Sample ID: OI77H

LIMS ID: 09-2022 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.009 U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OI77I

LIMS ID: 09-2023 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

Sample ID: NC COMP.C.L REP.5

SAMPLE

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-rec Q
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: NC COMP.C.U REP.1

SAMPLE

Lab Sample ID: 0177J

LIMS ID: 09-2024 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-rec Q
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.009

TOTAL METALS

Page 1 of 1

Lab Sample ID: 0177K

LIMS ID: 09-2025

Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

Sample ID: NC COMP.C.U REP.2

SAMPLE

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Sample ID: NC COMP.C.U REP.3

SAMPLE

Lab Sample ID: OI77L LIMS ID: 09-2026

Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as~recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.011

TOTAL METALS

Page 1 of 1

Sample ID: NC COMP.C.U REP.4

SAMPLE

Lab Sample ID: 0177M

LIMS ID: 09-2027 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.01	0.01 U

TOTAL METALS

Page 1 of 1

Lab Sample ID: OI77N

LIMS ID: 09-2028 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

Sample ID: NC COMP.C.U REP.5

SAMPLE

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: 01/14/09 Date Received: 01/16/09

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7471A	01/22/09	7439-97-6	Mercury	0.009	0.009 U

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: OI77LCS

LIMS ID: 09-2016 Matrix: Tissue

Data Release Authorized

Reported: 01/23/09

Sample ID: LAB CONTROL

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Mercury	7471A	0.21	0.20	105%	

Reported in mg/kg-wet

N-Control limit not met NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120%

TOTAL METALS

Page 1 of 1

Lab Sample ID: 0177MB

LIMS ID: 09-2016 Matrix: Tissue

Data Release Authorized:

Reported: 01/23/09

Percent Total Solids: NA

Sample ID: METHOD BLANK

QC Report No: OI77-Newfields Northwest

Project: MARINA PARK

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/kg-as-recQ
CLP-M	01/20/09	7 471A	01/22/09	7439-97-6	Mercury	0.01	0.01 Ŭ

なせ 39

12/27

5

3

 ω 10

15.8

2.5

3

" 12

Control / Control / Control / Control /

P

(1) (v

15.6

60 3

é, J

3

က 13 4

8

12/21 12/28

3

R.M.B.

4

3

3 32 3

B

3

4

8 W

155 S

28 DAY BIOACCUMULATION WQ DATA SHEET

		The second secon	The same of the sa
CLIENT	SPECIES 1	NEWFIELDS LABORATORY	PROTOCOL
City of Newport Beach	ark Macoma nasuta	Port Gamble Bath 4	ITM (USEPA/USACE 1998), OTM (USEPA/USACE 1991), ASTM E 1611, EPA Region 4 RIM (1993)
NEWFIELDS JOB NUMBER	WATER DESCRIPTION	TEST START DATE	TEST END DATE
1105-005-860 Bill Gardiner	ner North Hood Canal; filtered	16-Dec-2008	13-Jan-2009

_				-																		
DOCTOR	TIM (USEPAUSACE 1998), OTM (USEPAUSACE 1991), ASTM E 1611, EPA Region 4 RIM (1993)	TEST END DATE	13-Jan-2009			FLOW	ml/30sec	68	0h	38	38	38	38	39	38	0h	4	39	39	25		270
NEWELET DO 1 ABOUTOBY	Port Gamble Bath 4	TEST START DATE	16-Dec-2008			TTA CHIMAICHEAN CONT.	IECFINICIAIWUATE	opu M		***************************************		\wedge	-±1/21/7	8/18	61/21/20	BH 13/30	Helel SIMM	22/21 P	52/21 T	July 24	75 12/25	-6 12/26
	ıta		filtered		рн 7.8±0.5	H	unit	2.8	7.8	7.8	¥.8	79	7.5	7.7	7.6	6	7.5	5.£	87	2.8	7.4	ц 2.
	a nast		Canal;	¥		L	meter	M	<u></u>				~	ω	W	'n	3	W	5	\sim	W	h
	Macoma nasuta	WATER DESCRIPTION	North Hood Canal; filtered	WATER QUALITY DATA	SALIN.(ppt) 32±2	SALINITY	ppt	35	32	31	1/2	32	35	12	2	3	12	25	32	28	32	.33
- 0010000	2	WATER		ERG			meter	۶				≫	٤	δ.	M	'n	3	W	W	\sim	8	8
	¥		Ŀ	WA	TEMP (C) 15±1	TEMP	5 ,	1:51	1.51	15:1	12.1	(5.2	6.51	8.51	15.3	15.8	16.0	4.81	15.5	5.5	15.5	15.5
	Marina Park		Bill Gardiner		<u> </u>		meter	W				>	7	M	W	6	10)	\sim	~	8	5	4
		PROJECT MANAGER	BIII G		DO (mg/L) >4.5	D.O.	mg/L	5°t	7.5	7.5	7.3	7.6	4.4	7.0	N 8	9.	(e. 3	8.9	66	6.9	7.0	6.0
7001000		PROJEC					meter	3	******			>	3	W	∾	2	∾	~	~	\sim	3	3
						7 0 7	#	4	က	∞	ည	20	4	က	80	5	20	4	3	80	5	20
ı					(0	i d	ž Ž	Ψ.	7	ო	4	ഹ	-	2	ო	4	5	-	7	က	4	2
	Beach		90		NOI		à d	ļ 		0			-	7	က	4	2	ဖ	7	80	6	10
SUBSENT.	City of Newport Beach	NEWFIELDS JOB NUMBER	1105-005-860		TEST CONDITIONS	St. od (minarianiania)	CLIEN INEWFIELUS (D			Control /			Control /	Control /	Control /	" Control /	Control /	Control /				
Ċ	,	1Z		1		·											1		<u></u>	ş	L	L

			PROJECT	CT			SPECIES	+-			NEWFIELDS LABORATORY	PROTOCOL	
City of Newport Beach				Marina Park	a Parl	×	,	Macoma nasuta	nasni	ţa	Port Gamble Bath 4	ITM (USEPA/USACE 1998), OTM (USEPA/USACE 1991), ASTM E 1611, EPA Region 4 RIM (1993)	
			PROJE	PROJECT MANAGER			WATER	WATER DESCRIPTION			TEST START DATE	TEST END DATE	
				Bill Gardiner	ardine	16		North Hood Canal; filtered	anal;	filtered	16-Dec-2008	13-Jan-2009	
1						WAT	FRO	WATER QUALITY DATA	<u>∠</u>				
TEST CONDITIONS				DO (mg/L) >4.5		темР (с) 15±1	S	SALIN.(ppt) 32±2	, -	pH 7.8±0.5			
	9			D.O.	L	TEMP		SALINITY		Æ	TECHNICIANIDATE	FLOW	
<u> </u>	ָ ט	*	meter	mg/L	meter	ာ့	meter	ppt	meter	unit		ml/30sec	
15	ა	20	W	6.4	ω	15.5	3	32	4)	8.1	1 stc.) 9	727	,
16	-	4	7,	7.a	7	15.5	>	33		7.8	60/1/1 481	7	
17	7	е	ナ	7.3	7	- بو		32		7.3	MMK 112/09	40	
138	60	8	2	7.6	7	(5:3		32		4.7	10/6/1	3.8	
	19 4	5	1	4.7	2	15.7		32	/	7.7	\$e//p/1 to	38	
	20 5	20	7	٦.	7	15.8	,	32		7.6	balsi) gww	40	
	21	4	4		<u>ب</u>	০.৯)	_	32		7.5	MMB 1/6/09	42	
	22 2	က	35	7.3	<u></u>	16.1		32		7.6	ur Illoa	75	
	23 3	8	2	2,3	3	15.5	. 100	32	Û	7.3	TS 1/8/09	7,	
	24 4	5	€)	7.3	9	15.2	W	32	ω	7.3	75119	OH	
	25 5	20	5	17	2	15.2		32		7.5	UR 1/10	39	
	2e 1	4	۸	6.9	Λ	·<	γ	32	3	7.7	11/12		
27	7	8	3	57	ב	2.21		3		7.5	GR 1/12	42	
ı	_	4	1	9 %	7	15.8		31	1	4.4	2)1) Smm		•
	2	ю		æ.†	-	15.8		31		4.4			
			_	((1				\ /	

3 3 3

ب ب ب ب

က ထ က

0 8 4

28

Control /

٥

7.6

20

Ŋ

ירובאד	PROJECT	SPECIES 1	NEWFIELDS LABORATORY	PROTOCOL
City of Newport Beach	Marina Park	Macoma nasuta	Port Gamble Bath 4	ITM (USEPA/USACE 1998), OTM (USEPA/USACE 1991), ASTM E 1611, EPA Region 4 RIM (1993)
EWFIELDS JOB NUMBER	PROJECT MANAGER	WATER DESCRIPTION	TEST START DATE	TEST END DATE
1105-005-860	Bill Gardiner	North Hood Canal; filtered	16-Dec-2008	13-Jan-2009

1																	· ·						
13-131-2009			FLOW	ml/30sec	26	26	2 <i>h</i>	1/2	39	24	38	4)	40	Ŧ	24	7/	75	ţ	46	28	42	39	40
16-Dec-2008			TECHNICIANDATE		91/21 7				Ą	21/21	J 12/18	CR 12/19	BH 12/20	16/61 8MM	1 10/22 T	L 12/23	72/21 A	TS 12/25	T 12/26	5 127	T5 12/28	£12/28	MMMB (12/80
al; filtered		PH 7.8±0.5	抵	er unit	87 8	7.8	7.7	7.8	7.8	7.6	7.7	7.7	7.7	7.7	7.7	7.8	7.7	7.4	7.4	ιτ 1.	5 7.6	8,2	0 0 0 0
d Cana	DATA		_	meter					→	3	2	M	7	2	8	7	$\overline{\mathcal{C}}$	<u>w</u>	3	$\overline{\omega}$	3	$\overline{\mathcal{W}}$	~
North Hood Canal; filtered	WATER QUALITY DATA	SALIN.(ppt) 32±2	SALINITY	ppt	25	31	21	31	32	22	32	31	15	32	32	32	32	32	33	32	32	35	37
	TER G	S		meter	۸				>	3.	~	ή	7	3	\sim	5	\mathcal{V}'	3	3	ω	3	\sim	2
		TEMP (C) 15±1	темр	ی د) '5)	15.1	0:51	15.0	15.0	16.0	15.8	15.5	(5.9	(S.9	15.8	5'51	15.4	15.5	15.4	15.4	15.5	16,5	1.0.4
Bill Gardiner		Ţ.		meter	٧				\triangleright	3	8	N	r	3	3	8	N	8	3	8	10	8	3
Bill Ga		DO (mg/L) >4.5	D.O.	mg/L	h'£	7.7	7.7	ナモ	7.3	ا ئ. ا	(م. ز	7.2	· 5 (و <u>.</u> ه	(e. !	6.3	6.3	6.6	4.6	6.5	6.5	6,1	∞ و
		٥		meter	8				<u>~</u>	3	2	2	2	W	~	5	~	2	3	3	9	2	3
			100 E	JA10. F	9	7	;_	₹~	2	9	7	11	τ.	2	9	7	11	۲	2	9	7	11	Y
		40	gia	i di	-	7	ю	4	5	***	2	3	4	9	1	2	က	4	9	1	2	3	4
30		SNOI	\vu				0			1	2	3	4	2	9	7	8	6	10	11	12	13	14
1105-005-860		TEST CONDITIONS	CI POLITAREMENTO DO CO				LA-3 Ref /			LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /	LA-3 Ref /

City of Newport Beach	PROJECT	Marina Par	Park		SPECIES 1	1 Macoma nasuta	nasu.		NEWFIELDS LABORATORY Port Gamble Bath 4	PROTOCOL ITM (USEPAUSACE 1998), OTM (USEPAUSACE 1991), ASTM E 1611, EPA Region 4 RIM (1993)
PROJECT MANAGE	Mager	- 1	ž	-	WATER D	INICOFFIE WATER DESCRIPTION	a nast	lla	FOIL GAITIBLE DAILL 4 TEST START DATE	ASTM E 1811, EPA Region 4 RIM (1993) TEST END DATE
Bill Gardine	Bill Gardine	ğ i.	<u>.</u>			North Hood Canal; filtered	Sanal;	filtered	16-Dec-2008	13-Jan-2009
			_	WAT	ER Q	WATER QUALITY DATA	ĕ			
TEST CONDITIONS DO (mg/L) TE		F ′		TEMP (C) 15±1	Š	SALIN.(ppt) 32±2		pH 7.8±0.5		
DAV REP 148# D.O.	٠٥٠			темр		SALINITY		рН	TECHNICIANDATE	FLOW
!		meter	. 1	ىد	meter	ppt	meter	unit		ml/30sec
15 5 2 3 6.9 3		60		15.6	3	32	3	7.9	1871 1	42
16 1 6 4 7.2 4		2		15.5		33	٠	7.8	60/1/1 HB	1
17 2 7 4 7.3 4	8	ナ		9. છ)		22		7.3	POK11 2409	38
18 3 11 14 76 14	····	'n		15.7		32		7.8	7 1/3/05	39
19 4 1 4 2.9 4		4		15,7	1	32	_	スチ	114/03	39
 나 <	 나 <		,	16.2		32	_	ナナ	MMB 1/5/09	3
21 1 6 4 7.9 4		ታ		15.8		33		<i>ې.</i> ۴	Make ilbion	38
22 2 7 H 7,1 Ly		Ţ		15.9		32		7.7	(x 1/7/09	39
23 3 11 3 7.5 3	[3]			163	3	33	B	h't	75 1/8/199	725
24 4 1 3 7.3 B		W		15.2	60	32	M	ょら	7 13	42
25 5 2 4 7.(4 ?	4			15.3		25	_	7.5	G 1110	38
26 1 6 3 7.0 3	~	\mathcal{U}		15.1	N	32	3	7.7	G ((1)	33
27 2 7 4 7 6 4	h 9 c	3		15.4	_	7		75	GR 1/12	38

MANG 1113

4,4

31

5 00

4

9

4.4

3 3

r

છં

4 4 00 H

Ξ

28

LA-3 Ref/

3 8

8.5

4.4

 $\tilde{\infty}$

00

હ

0

4 C

28 DAY BIOACCUMULATION WQ DATA SHEET

CLIENT	PROJECT	SPECIES 1	NEWFIELDS LABORATORY	PROTOCOL
City of Newport Beach	Marina Park	Macoma nasuta	Port Gamble Bath 4	ITM (USEPA/USACE 1998), OTM (USEPA/USACE 1991), ASTM E 1611, EPA Region 4 RIM (1993)
NEWFIELDS JOB NUMBER	PROJECT MANAGER	WATER DESCRIPTION	TEST START DATE	TEST END DATE
1105-005-860	Bill Gardiner	North Hood Canal; filtered	16-Dec-2008	13-Jan-2009

EWFIELDS JOB NUMBER				PROJECT	PROJECT MANAGER			WATER	WATER DESCRIPTION			TEST START DATE	TEST END DATE
1105-005-860	6				Bill Gardiner	ardine	_		North Hood Canal; filtered	Canal	filtered	16-Dec-2008	13-Jan-2009
							MA	ERG	WATER QUALITY DATA	ΨŢ			
TEST CONDITIONS	IONS			٥	DO (mg/L) >4.5		TEMP (C) 15±1		SALIN.(ppt) 32±2		pH 7.8±0.5		
CI ENTRIEMEIST DE ID) PAV	818	* 841		0.0.		TEMP		SALINITY		H	TECHNICIANIDATE	FLOW
	5			meter	mg/L	meter	ာ့	meter	bpt	meter	unit		mb30sec
		₹-	10	ω	43	\sim	2:5/	\sim	3/	5	7.7	21/12	38
		7	12		2.9	<u> </u>	ري:/	_	3/		ナナ		14
Comp C-L /	0	ო	13		6'£		6'71		35		52		38,
		4	17		4.4		15.3		3/		7.7		39
		5	6		7.6	<u>></u>	15.1	->	32	>	27		1/1
Comp C-L /	7	-	10	~	6.9	2	8.51	-8	32	5	7.5	7/21 T	26
Comp C-L /	2	2	12	2	2.4	3	2.51	3	75	\sim	7.7	F 12/18	38
Comp C-L /	က	က	13	8	1.3	2	15.6	Μ	3	3	7.7	CR 12/19	77
Comp C-L /	4	4	17	5	6.9	2	15.8	کر	18	3	±.£	19th 12/20	7 7
Comp C-L /	2	2	6	3	6.5	3	15.8	8	32	₹	4.4	MMB (2/2)	7
Comp C-L /	9	-	10	~	ر.ن	W	15.9	\mathcal{V}	22	3	ナナ	72/21	38
Comp C-L /	4	2	12	3	£.0)	3	15.5	\mathcal{W}	32	M	关子	J 12/22	38
Comp C-L /	8	က	13	8	6.4	3	15.4	W	32	m	7.8	4 17/24	42
Comp C-L /	6	4	17	Μ,	6.6	3	15.4	8)	32	W	4.3	TS 12/29	Оh
Comp C-L /	10	2	6	3	5.8	3	15.4	2	33	ω	л	7 12/26	· 07
Comp C-L /	11	1	10	3	4.0	ω	(5.5	2	32	W	Ļ.	4 14 V	38
Comp C-L /	12	2	12	3	4.6	N	15.4	ω	32	00	٦.٢	7 12/28	38
Comp C-L /	13	3	13	'n	ۇ.ۇ	~	15.5	N	32	<u></u>	78	11/29	24
Comp C-L /	14	4	17	3	الم في	3	اج.د	8	32	2	7.8	MME (2/30	38

				The state of the s
GLIENT		SPECIES 1	NEWFIELDS LABORATORY	PROTOCOL
City of Newport Beach	Marina Park	Macoma nasuta	Port Gamble Bath 4	ITM (USEPA/USACE 1998), OTM (USEPA/USACE 1991), ASTM E 1611, EPA Region 4 RIM (1993)
NEWFIELDS JOB NUMBER PROJECT MANAGER		WATER DESCRIPTION	TEST START DATE	TEST END DATE
1105-005-860 Bi	Bill Gardiner	North Hood Canai, filtered	16-Dec-2008	13-Jan-2009

ĭ
δ
Ž
RC
MAT
>

28 DAY BIOACCUMULATION WQ DATA SHEET

ITM (USEPA/USACE 1998), OTM (USEPA/USACE 1991), ASTM E 1611, EPA Region 4 RIM (1993) Port Gamble Bath 4 NEWFIELDS LABORATORY Macoma nasuta Marina Park City of Newport Beach

													ASIM E 1011, EPA REGION 4 KIM (1995)
NEWFIELDS JOB NUMBER				PROJEC	PROJECT MANAGER			WATER	WATER DESCRIPTION			TEST START DATE	TEST END DATE
1105-005-860	99		-		Bill Gardiner	ırdiner			North Hood Canal; filtered	Canal;	filtered	16-Dec-2008	13-Jan-2009
							WAT	ER G	WATER QUALITY DATA	ΙΨ			
TEST CONDITIONS	NOI	10			DO (mg/L.) >4.5		TEMP (C) 15±1	ő	SALIN.(ppt) 32±2		рН 7.8±0.5		
CLIENTINEWEIER DS ID	γaς	AHD.	* A01.		D.O.		TEMP		SALINITY	_	РН	TECHNICIANIDATE	FLOW
				meter	mg/L	meter	၁့	meter	ppt	meter	unit		ml/30%ec
		-	16	V	7.7	\sim	15.2	W	32	\sim	ナナ	21/21	Oh
		7	15		シゲ	_	151		25		7.7		24
Comp C-U /	0	က	19		7.3		1.5)		32		1'8		38
		4	14		7.5		15:1	-	31		8 *		40
		5	18	>	7.8	>	(5.3	>	31	Þ	7.7	A	24
Comp C-U /	~	-	16	3	7.6	3	15.8	8	22	3	7.6	Z1/21 J	42
Comp C-U /	2	2	15	3	7.2	3	8'51	3	7.6	3	7.7	7 12/18	75
Comp C-U /	က	3	19	Š	9.9	2	15.6	3	31	3	7.7	Gr 12/19	- - -
Comp C-U /	4	4	14	3	6.9	3	15.6	2	31	7	7.7	12/20	۲۶
Comp C-U /	5	2	18	જ	و و	ゆ	15.9	3	31	W	+	10/6) BMM	6 2
Comp C-U /	ဖ	_	16	~	7.(\sim	15.0	Çη	25	W	2.8	d 12/22	22
Comp C-U /	7	2	15	~	53	~	15.5	'W	25	2	7.7	£ 12/23	40
Comp C-U /	∞	က	19	~	16.2	N	15.4	W	35	W	7.7	4 12/24	40
Comp C-U /	თ	4	14	60	0.3	8	15.3	W	33	M	7.4	T 12/25	7
Comp C-U /	9	ž,	18	3	6.2	23	15.5	3	33	3	7.4	TS 12/20	40
Comp C-U /	7	τ	16	3	6.9	3	15.5	2	32	N	7.7	Falei 7	40
Comp C-U /	12	2	15	0	6.5	W	15.4	8	39	3)	7.6	F 12/28	38
Comp C-U /	13	ო	19	3	2.0	62	15.6	N	35	9	7.8	4 m/25	55
Comp C-U /	14	4	14	8	ا اه.	3	15.4	₩	22	3	7.9	MM.R 12/30	\$

28 DAY BIOACCUMULATION WQ DATA SHEET

CLIENT				PROJECT	_			SPECIES 1	Į.			NEWPIEL DS LABORATORY	PROTOCOL
City of Newport Beach	3each				Marin	Marina Park	v		Macoma nasuta	a nas	uta	Port Gamble Bath 4	ITM (USEPAUSACE 1998), OTM (USEPAUSACE 1991), ASTM E 1611, EPA Region 4 RIM (1993)
NEWFIELDS JOB NUMBER				PROJEC	PROJECT MANAGER			WATER	WATER DESCRIPTION			TEST START DATE	TEST END DATE
1105-005-860	Q.				Bill G	Bill Gardiner	:اـ		North Hood Canal; filtered	Cana	l; filtered	16-Dec-2008	13-Jan-2009
							WA	ER C	WATER QUALITY DATA	ΥĮ			
TEST CONDITIONS	SNOI				DO (ma/L) >4.5		темР (с) 15±1	s	SALIN.(ppt) 32±2		рн 7.8±0.5		
CI JENITAREWEIRI DS ID	λΨŪ	OED	* 0.4		D.O.		TEMP		SALINITY		Hď	TECHNICIANIDATE	FLOW
CELEVITINE PIECES ID	5		Nuc.	meter	mg/L	meter	ွင	meter	ppt	meter	unst		ml/30sec
Comp C-U /	15	5	18	3	p.4	3	15.7	3	32	3	8.3	TS 12431	38
Comp C-U /	16	-	16	7	F.3	2	15.5		32		3·£	60/1/1 N8	Oh
Comp C-U /	17	2	15	7	T. +	7	10.4 F. R.	_	35		7.S	MMB 1/2/09	でナ
Comp C-U /	18	က	19	Ž	七七	7	15.8		35	_	8%	50/2/17	39
Comp C-U /	19	4	114	7	212	7	15,7	1	32	/	7.7	20/2/17	38
Comp C-U /	20	5	18	4	7.1	. }	(5.7		33		4.6	15/19 BWW	43
Comp C-U /	21	_	16	¥	4.4	ナ	9.51	_	32		7.0	601911 gram	4
Comp C-U /	22	2	15	J	6.9	Ţ	15.8	~	25	-	7.7	G 117/09	40
Comp C-U /	23	3	19	3,6	7.9	3	15.4	3	32	3	7.0	TS (/8/09)	77
Comp C-U /	24	4	14	3	0.t	9	1.6.1	W	32	(N	2.6	TS 119	3\$
Comp C-U /	25	5	18	þ	7.2	4	15.2	_	22		7.7	G 1/10	745
Comp C-U /	26	1	16	٨	7.0	જ	15.0	જ	32	3	7.7	GR 1/1.1	39
Comp C-U /	27	2	15	7	7.4	7	153		3	_	7.6	4 1/12	40
		7	16	子	و نه	4	<u>8</u>		3	-	Λ.	MWB 1/13	
		7	15		7.5		ñ. T		18		ή. †	>	
Comp C-U /		ന	19		\$ \$		<u>15</u>		31		4.4		
		4	41		さん		⊗ (3°		31		4.4		
		5	18	<u>></u>	7.6	>	15.8	->	31	- 	7.7	→	

	2000		PACACI	100			THE REAL PROPERTY.	,	SALAN TOLON		Timer.	Section of the		Manager .		2014		
	City of Newpon	į	- 15		Marra Park		1105.0	008-100	1	Gardiner		i		COMPAGE STREET SPACE	ACC 1997, ACC Segment State (1)	N N N	Marcons	1
15/14 11/15 11/16 11/15 11/1	Seemon	1								SHOWOOD.	TEATARCE	SESTATIONS				4		
125 4/2 125 125 125 125 125 125 125 125 125 12		1.	11	Section 1	4/21		Pile	æke १	18/4	74	- 74	4421	(1/36	1वंद्य	tok!	अटीटा	4/2	क्रीट
125 16 16 N N N N N N N N N N N N N N N N N	l	_	7[***	4	1	MMB	GWW	AWA	7	7	7	۴	4	ę	9	*	MMB
15 16 16 N N N N N N N N N N N N N N N N N	CLEMI) MENEWLOSSO	474	AND A S TRUM			+		•	-	•	14-	-	•	2	Ŧ	2	2	*
1	Na Ne	•		*	2.5	(5)		2	2	Z	Z	Z	2	2	Z	2	t	2
25	CA3 Bac			10	7	2	2	2	2	Z	N	Z	2	2	Z	2	Z	2
0 from cor, observing the base See 45 55, 35 35 35 35 35 35 35 35 35 35 35 35 35	Comments	W.		*	V/N	45	100 (A)	45	S S)	8	2	53	83	59	53	75	64	35
0 from on surface of eacher (12 1/2) 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2) D	*			167	46	45	59	V8	43	5,5	, 5	33	32	35	B		
1 1 (s 1 s N N N N N N N N N N N N N N N N N	Comment			*	18.	z	Z	2	2	4.5	1			35	45	35		2
1 1 15 15 N N N 15 15 15 N N N N N N N N	LAST	+		٠	Z	Z	2	Z	Z	Z	Z	Z	2	2	2	2	Z	2
9 1 55 W 13 Ed 25 45 25 105 115 45 55 75 65 115 115 115 115 115 115 115 115 115	14194			100	9	3.	2	2	2	29		N.	2	Z	2	2	7	2
1	ž.			17.	17.00	1,40	1.73	45	Js	8	115	5		35	59	65	1//5	žž.
1 = 55 55 55 75 115 105 95 95 145 155 135 105 11 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	š					5,64	45	ÿ. <u>₹</u>	95	3	(16	62		3	-	115	15 Pm	
0 from on surface of water 12/17/08 4 105 105 95 85 75 105 105 105 105 105 105 105 105 105 10	Comp CA.	. * .		9	3	53	Ss	75	78	1(5	105	9.5	8	145	160	135	105	
1 85 85 45 45 16 16 16 105 105 45 105 115 105 0 fram on surface of water 12/17/08 4 0 1	1.63 flad	-	H	Ţ.	2	Z	2	Z	z	Z	Z	z	2	2	2	-2	Z	2
0 from on surface of enature 12/17/08 of 105 05 85 75 105 11 0 from on surface of enature 12/17/08 of 08 08 11 11 11 10 10 10 10 10 10 10 10 10 10	Comp C4	-		2	\$	83	75	\$\$ \$\$	Şe	\$5	200	\$	2012	35	501	115	50)	75
from on surface of water 12/17/08 " " " 1/16/08 W.C. BOS 7 65. WIMB 12/20/08	No America	*		2	65	5.5	SS	s) 		13	63	0	8	80	4	0	II S
WC. 805 765. WIME 12/20/08		8				A FAME	September 1	July.	12/12	lan.	4	100						
WC. Bys > 65, Will 12/20/08		50				2	2	ž,	T		7							
		8						30/										

Columnication Comments (Columnication)

ž

28-DAY BIOACCUMULATION MACOMA TEST OBSERVATION DATA SHEET 3

NEWFIELDS

City of Newgort Beach		100	Martin Park		1105 005 000	9 2	OME	Bill Candinar	<u> </u>	F-GFT		The autients positive construction	TAY LUSEPHALISACE 1999, OTA FUSEPHALISACE 1991, ASTAN E 1911, EPA Region A REC (1901)	OTA NATI	Manuscratta.	1
Observation Key	F							ACHORA S	ENDPOINT DATA & CRISE PLANTONS	STRVATOR						
100 May 100 Ma	1	ments have	÷+	91/21	13/19 1446	SAWA MWA	Helei	432	1423	4	12/25	寺や	7/4	37 6	cales	12/30 MM6
CLEDAT / B	AND AN THURS	417	-					•		•		9.	F	22	tt	14
· aparec		,	45	15	2	2	Z	Z	Z	X	51	Z	2	2	Z	2
Compton 2			25	25	2.5		72.1	Z	7	Z	2	2	Z	2	Z	
Comp Col. 1			23	, <u>s</u>	2	>	->	Z	Z	2	2	Z	2	2	7	->
Comp.C.L.		1	95	50	00	50	s) co	(5.5	145	135	135	115	90	(28)	115	11s
6 octavo	1723		Z	~	2	2	2	Z	Z	Z	2	Z	-7	7	¥	2
Commerce 3		-	2	2	Z	2	2	15	Z	×	-2	5	2	Z	Z	2
Cooker 5		R	3	3.0	38	35	35	S	35	AL.	88	ñ	23	45	S	35

NEWPIELDS

CONTRILL OF THE TOTAL TO	City of Newport Beach	6	LES CO	Marris Park	110.68	1185.008	1105-005-060	10	IN Carton	Table 1	Statement of the A		The customs customs and	AND CARPACACE THE CITY AND ASSAULT OF	N. J. S.	Manney	abanda .		
	Charlery		L						DADPOWE	54.14.1.08	HENATIONE			C according	1000				
** ** ** ** ** ** ** ** ** ** ** ** **	Digit!	35	withing	<u>4</u> ←	1/04 8H	(2 m	13/n	至子	givi)	1 lebs	gww WH)	118/09	- Yes	110	3 3	8 3	£ 4	Виријеш	
	0.65477	a e trons		2	8	ū	#	#	R	π,	a	R	×	я	×	a	Ħ	ell sedonuell	
	MIN	٠	#	ス	Z	2	Z	N	2	2	2	Z	2	5	5	N	V	88	
- 85 8° 35 6° 5 6° 6° 4° 6° 1° 5 125 125 125 93 6° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8°	CASING	-	**	2	2	Z	N	2	2	2	Z	2	2	2	2	2	72	74	
	Commit	*	-	88	S S	50 SV	57	75	8	9	s 5	33	104		125	2000	S	op.	
				(65	75	2.5	63		1ks	\$	¥	5		\mathcal{O}		25 LM	4	æ	
	Company	,	-	2	<u> </u>	25	7.		Š	감	Ss	Š	53	8				8	0.0000
	LATING	-	-	2	2	2	Z	×	2	2	2	2	2	. 2	2	2	Z	8	
** SS 85 25 65 46 65 46 65 45 25 75 85 75 65 75 23 15 16 13 15 16 13 16	LASSE		1	5	<u>~</u>	S	Z	2	2	2	2	2	2		100	2	Z		3
	Comment	*	-	R	20	å		Č.			u ₹	R	7	80		59	4	17	
	20	-		501	9	1.00		38		W 25	100	X	56.34	M2 58	25,2m	52	W		ž
	Comprice	+	2	155	\tilde{G}		So Im	103	IIs	52		\$	·/	W.S	98,1M	85	£	3	7
* (25 175 85 72 1/6 95 85 1/5 105 89,22M 105 105 105 105 125 22 * " "	UASBet		=	2	N		Z	Z	Z	. 2	7	2		-2	5	2	Z	K	₹.
15 N N N N N N N N N N N N N N N N N N N	Comp.C.c.	*	D.	125	-	(A)	22	_	9	80	Ils	8	85.2m		20	501		13	
22 22 22 22 22 22 22 22 22 22 22 22 22	Comp. C-4.	*	D			115	75	5	12.S.	c4	50	型	105, LM	₹	DS 241	105			30
2 2 2 2 2 2 2 2 2	Domeno	•	1	-2	Z	2	7	2	2	2	2	2	2	2	2	2	Z	쫎	
	000	+	1	2	Z	Z	Z	Z	z	z	2	2	2	5	2	2	2	8	

@ we, made 11 whom

OCCURS SOM Security

j

			Buyertu	all vadmail	32	ñ	B	G.	lo.
	1		<u>-</u> P	п	2	縣	7	S	26
	Macona A		1/12	a	n.	200	2	2	59
	N I I		3%	я	Ν	M2801	2	2	\$
	PERSONAL THE GLOST PAUSACE 1989, CTS SCRIPPALSACE 1981, ACTAE 1911, EPA Paugue A PRE (1982)		9/1	R	N	MZ 521	2	2	25
	FIVE GASSING GREENALS GREENALS WITH SPAY		₹ b	x.	7	145	2	2	於
			= 6 P 6	я	2	æ	2	2	子
	Ban 4	ERVATIONS	Pole)	а	2	×Σ	2	2	99
	i i	ENCHORNY DATA & CRESTINATIONS	Work ,	÷	2	38	2	2	3,5
	Bill Cardiner	I NOW COM	115pm	я	2	×	2	2	SS.
) Sel		12/		N	133	7	Z	75
	0.880		1/3/4	,	N	135	`Z	2	1,4
	1105-005-880		1/2/org MANS	Þ	2	12.5	2	2	25
			1/2	2	Ν	14/5	2	Z	59
	Marrie Pan		当七	10	2	2	2	2	去
			work the	AQ ent		.0			R
60.	1	167	25	AND ALE THUM	ļ	ļ	ě		į
NEWFIELDS	City of Newport Beauth	Observation		CLEAT?	COMP.CO.	Comp C-C	Control	Contra C-C	Comment

29-DAY BIOACCUMULATION MACOMA TEST OBSERVATION DATA SHEET 3

NITFRILIS

į

state of bequest in	-			Martin Mark		Appropriate water	1		design and		1 1111					ĺ	
Observation Asy		H							DISCHOOL		SASA & ORBEDVANIONS	9					
100 mm m	03	5		至今	<u>2</u> 2	1 2 8	12/2	4/4/	1 (5/09) MAND	dalah Melah	113/m	\$ K	±. 4	28	≅%	12 ×	ã t-
in self-dagged specific	1	T	-	2	2	ь	,	•	R	Ę.	R	R	z	n	×	ħ	*
2000				2	2	Z	Z	2	2	2	2	N	2	2	2	N	Z
(4115)				4		_		_		-	_	-	-		-	_	-
Contract	-																18/3
Canada	-																
Common			1														
24275	-	i										_					
M1545	**																
Campi	~																
10 400	-																
Comp.Cit.			r														
Dec 200	~																
75 440	-		D					- 5									
10 deep	-		ii.														
000m 0-0	•		,			+=											
CompCil	н		7										_				
Comp.Co.	+		,										_				
15 Aug			1										_				
0.0 440	-		,														
0.0440			1												-	*	
Contract	•			7	->	>	_	>	-	>	-	>	5	>	>	>	D

ORGANISM RECEIPT LOG

			,		
		3	hip pr	transport	Notes:
1-121	4				 ₩
Technician (Initials)	nductivity or Salinity clude Units)	(1/5	i	Temp. (0°)	Hq (etinU)
					:sətoN
lnitials):	Technician (Ves No	:meinsgrO to Ol l	Confirmation o
•	49	_		1009	
	•	Received By:		ontainer:	Condition of Co
	(,oN Bi	B of L (Trackin	كعلائق	NevFidle	Shipper:
	410Pt	S etsmixorqqA ∤	1	∞9 .ganisms:	Condition of Or
:4	Source Batc		No. Received:	08,	1
pra	remo pa	Contact:		かけつ	Phone:
ON	г өД			74 W	
e Attached	ioval			<i>1</i> —	Address:
	sroking	Source:		b1076	
8021	be 191		5401	80/	19/19
atch No.	NewFields B		:emiT	•	Date:

ORGANISM RECEIPT LOG

· · · • • · · · · · · · · · · · · · · ·	*		,		· · · · · · · · · · · · · · · · · · ·	Notes:
HS	58	2	+ 5	ī S	0.51	h'E
Technician (elsitini)	ductivity or salinity	ì		D.CI	Temp.	Hq (etinU)
				1		
						:setoN
initials):) nsicindo9T		(Ves No	:meinsgrO to Ol	To noitsmultnoO
****	48	:ya t	Receive	ľ	rtainer: (2600	Condition of Cor
	0.0N g 1998 888	_	8 of L (T		KAPY	Shipper:
	ze or Age:				smeins)	Condition of Org
:Կ	Source Batc			No. Received:		No. Ordered: ∑∭
Ļ	N BUZTY	400	:TostnoO		J17 ~0	Phone:
ON)	х өХ				0 F1	
ce Attached	iovnl					:searbbA
	bv: 3218	1 44	Source:	51	tydoN d	Organism:
0668	3 St			Q0h1	a	0/2/101
satch No.	NewFields E			:emiT	9	Date: